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i!ngineering Applications Motivation

* Most computer models for engineering applications are
developed to help assess a design or regulatory
requirement.

* The capability to quantify the impact of variability and
uncertainty in the decision context is critical, e.g.
Prob(System Response > T) < 0.01

* This presentation discusses 5 uncertainty quantification
(UQ) methods.

— Latin Hypercube sampling
— Analytic reliability methods
— Polynomial chaos expansions
— Dempster-Shafer theory of evidence
— “Second-order” probability analysis
 These methods are all implemented in DAKOTA
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% Uncertainty Quantification Methods

 Goals of UQ methods:

— Based on uncertain inputs (UQ), determine distribution
function of outputs and probabilities of failure (reliability
metrics)

— Quantify the effect that uncertain (nondeterministic)
input variables have on model output

— Identify parameter correlations/local sensitivities, robust
optima

— Identify inputs whose variances contribute most to
output variance (global sensitivity analysis)

— Epistemic sensitivity analysis studies when the
uncertain parameters only have bounds (intervals)
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\ DAKOTA Overview

iterative DAKOTA

4

analyszs optlmlzatlon uncertainty quant ]
‘ parameter est., sensitivity analys1

Goal: answer fundamental engineering questions

* What is the best design? How safe is it?

« How much confidence do | have in my answer?
Challenges

« Software: reuse tools and common interfaces

* Algorithm R&D: nonsmooth/discontinuous/multimodal,

Safety Margin

mixed variables, unreliable gradients, costly sim. failures . T S I
« Scalable parallelism: ASCI-scale apps & architectures Nominal Optimized
Impact: Tool for DOE labs and external partners, broad application

deployment, free via GNU GPL (~3000 download registrations) mh E}E&AM
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Cantilever Beam Description

P
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 Goal: understand how the deflection of the beam varies with
respect to the length, width, and height of the beam as well as
to applied load and elastic modulus of the beam

Variable Description Nominal Value

L Length I m

\W Width 1 cm

H Height 2 cm

I Area Moment of Inertia 1/12 WH?

P Load 100 N

E Elastic Modulus of 69 GPa

Aluminum 6061-T6
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Sampling

* Much work has been done to develop efficient methods of Monte Carlo
sampling, including stratified sampling (Latin hypercube sampling) which
spread the samples over the space, or quasi-Monte Carlo sampling

« Sampling is not the most efficient UQ method, but it is easy to implement
and is transparent in terms of tracing sample realizations through multiple
codes for complex UQ studies

Input
Distributions Output
\ Distributions

N samples of X

N
A

I~

( N realizations of X

~_

Measure 1
j Measure 2
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Sampling Results

Variable Distribution Distribution Parameters
L Normal Mean=1m
Std. Dev.=0.01 m
\\Y% Fixed 1cm
H Fixed 2cm
P Normal Mean=100 N
Std. Dev.=5N
E Normal Mean = 69 GPa
Std. Dev. = 13.8 GPa
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Sampling Results
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Analytic Reliability Methods

* Define limit state function g(x) for response metric (model
output, e.g., F.;,) of interest, where x are uncertain variables.

* Reliability methods either

— map specified response levels g(x) = z (perhaps corr. to a
failure condition) to reliability index B8 or probability p; or

— map specified probability or reliability levels to the
corresponding response levels.

Mean Value (first order, second moment — MVFOSM)
determine mean and variance of limit state, translate to from p, 3:

pg = g(px) ™
B o dg dg
Tg = Z Z Cov(i, j) e, {.”'x)a{.“'x) simple approx.,
* 0 but widely used
3 _ Hg—Z . > by analysts; also
= 55 Fed Ty ol 5= g — Oygfeds second order
g g = Z - Iy " Z = g 4 gg.ﬁr.'f.‘f!f formulations
it oy = o .
! _/ ) o
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Cumulative Probability
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Analytic Reliability: MPP Search

Reliability Index
Approach (RIA)

minimize ulu

subject to G(u) =2

A

a MV

O x—/u-space AMV

@ x—/u-space AMV+ & FORM

+ 100k Latin hypercube samples

I
05

1 | 1
1 15 2
Response Value

u* - MPP

FORM

v

ui

SORM

G(u)

..should yield better
estimates of reliability
than Mean Value
methods

Perform optimization in u-space (std normal space corr. to uncertain x-space)
to determine Most Probable Point (of response or failure occurring)
\

N
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Analytic Reliability Results
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*- olynomial Chaos Expansions (PCE)

* Represent a stochastic process (the uncertain output f(X))
as a spectral expansion in terms of suitable orthonormal
eigenfunctions with weights associated with a particular

density p
f(X)z&:ZakHév(‘g)

* The uncertain output f(X) is approximated by finite
dimensional series based on unit Gaussian distributions

* In the expansion, the H terms are Hermite polynomials
(multi-dimensional orthogonal polynomials), the ¢ are
standard normal random variables, and the coefficients a,
are deterministic but unknown.

* The job of PCE is to determine the coefficients a,. Then,
one has an approximation that can be sampled many times
to calculate desired statistics
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olynomial Chaos Expansions (PCE)

Conceptually, the propagation of input uncertainty through a model using PCE
in a non-intrusive approach consists of the following steps:

(1) Transform input uncertainties X to unit Gaussian random variables: X 2 §
(2) Assume a particular form for the orthogonal polynomials such as Hermite

(3) Generate many samples of X and £. These will generate a a set of linear
equations to solve for the spectral expansion coefficients

P
f(X)=a= Zak[—[év(éi) fori=1...N samples
k=0

(4) Once the coefficients ak are determined, take 1000s of samples of £ and run
them through the spectal expansion equation to obtain an approximation
for f(X) = build up a CDF of f(X)

NOTE: In step 3, DAKOTA can build the PCE approximation based on LHS
samples, quadrature points, collocation points, or on a set of points that the
user has determined. These methods have pros and cons in terms of the
efficiency and applicability. This is an active research area which we are
still investigating.

Sandia
m National
Laboratories




14

\

Polynomial Chaos Results
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Epistemic UQ

Totat Normalized Releases: Replicate R1

Second-order probability \gn 100 Observatons, 10000 FuurssiObsanaon
— Two levels: distributions/intervals on e B 1
distribution parameters o b ]
— Outer level can be epistemic (e.g., interval) _;f;_wz r '; ]
— Inner level can be aleatory (probability distrs) f;w_, L
— Strong regulatory history (NRC, WIPP). Tl ]
; Frame 2a ]

10-% sttt o

105 104 10 102 10t 19 100 12
Normalized Release (EPA units}, R

Dempster-Shafer theory of evidence o
— Basic probability assignment (interval-based) H\ltL

— Solve opt. problems (currently sampling-based)
to compute belief/plausibility for output intervals

Fallure
Region
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Second-order Probability

Choose a possible realization, E,,
from epistemic variables
within interval bounds [L,U]

( ) cor,

Sample from
aleatory distribution with
distribution parameters
set at E;

J samples
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Second-order Probability

Second-order Probability

1.00 -
0.90 A
0.80 A
0.70 -
—e— Lower Bound on CDF
w 0.60 1 —=— Upper Bound on CDF
8 050 1 1 of 20 CDFs
040 | Another of 20 CDFs
0.30
0.20 A
0.10
0.00 T T T T T T T T 1
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Displacement (cm)
Variable Epistemic Mean Distribution
L [0.98,1.02] m Normal(epistemic mean, 0.01) m
P [90,110] N Normal(epistemic mean, 5) N
E [41.4,96,6] GPa Normal(epistemic mean, 13.8) GPe
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}i!plstemlc Uncertainty Quantification

» Epistemic uncertainty refers to the situation where one does not know
enough to specify a probability distribution on a variable

« Sometimes it is referred to as subjective, reducible, or lack of knowledge
uncertainty

+ Initial implementation in DAKOTA uses Dempster-Shafer belief structures.
For each uncertain input variable, one specifies “basic probability

assignment” for each potential interval where this variable may exist.
* Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.2 !
Variable 1

|
BPA=0.5 | BPA=0.3

Variable 2

Sandia
m National
18 Laboratories




istemic Uncertainty Quantification

* Look at various combinations of intervals. In each joint interval “box”,
one needs to find the maximum and minimum value in that box (by
sampling or optimization)

- Belief is a lower bound on the probability that is consistent with the
evidence

» Plausibility is the upper bound on the probability that is consistent with
the evidence

« Order these beliefs and plausibility to get CDFs

@ Original LHS samples used
0.1 @ () ® To generate a surrogate

Variable 2 02 o ® Million sample points
. © generated from the

A surrogate, used to
determine the max and

&
0.7 © AA AA min in each “cell” to
A

A calculate plausibility and
© A belief

S 3 2
Variable 1
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Dempster-Shafer Example

Variable Intervals BPA
L [0.97,1.03] m 1.0
P [85,115] N 1.0
E [27.6,110.4]GPa 1.0

Table 3a. Epistemic Variables for the Cantilever Beam Problem, Example 1

Variable Intervals BPA
L [0.97,0.98][0.98, 1.02][1.02,1.03] m 0.25,0.5,0.25
P [85,90] [90,110] [110,115] N 0.25,0.5,0.25
E [27.6,41.4] [41.4, 96.6] [96.6,110.4]GPa 0.25,0.5,0.25

Table 3b. Epistemic Variables for the Cantilever Beam Problem, Example 2
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D-S Epistemic Uncertainty Results
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Method Comparison

UQ Method Sampling Analytic Polynomial Dempster-Shafer | Second- order
Characteristics Reliability Chaos Probability
Inputs specified YES YES YES, Only NO No for outer loop;
by probability Wide range of Can handle many Gaussian yes for inner
distribution distributions common distributions for

distributions many cases

Correlations YES In some cases YES NO No for outer loop;
amongst inputs yes for inner
Number of (10-20) * M No samples needed; | (10-20)*M to be 100K- 1Mill. 50-100 in outer
samples required | Note: the number of | number of function | able to solve for Often ~100- loop *
for M uncertain samples depends on | evaluations depends | coefficients 1000 LHS samples | (10-20)*M in inner
inputs the statistics of the | on the problem are taken to loop

output distribution | formulation and construct a

being resolved. For | type of surrogate, and the
accurate mean optimization used surrogate is
estimates, 30 -50 sampled millions of
samples may be times

sufficient, whereas
thousands of
samples are needed
to estimate a 99™

percentile
Outputs Output distribution | Probability of Functional form of | Cumulative Ensembles of
(CDF) with failure for a given output: Y=PCE(X). | distribution CDFs; lower and
moments response level From this, one can | function for upper bounds on
calculate statistics | plausibility and possible CDF given
of interest belief epistemic
uncertainty
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*- Summary

* UQ is more than sampling

« Sampling is at the basis of the more advanced
methods

* Engineering analysts are starting to use more
efficient aleatory methods and explore epistemic
methods

* There is much confusion over the proper use and
applicability of each method

« Example applications and case studies can be
used to help deploy UQ methods
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DAKOTA Team Contact Info

* Web site:
— http://lendo.sandia.gov/IDAKOTA
— Email: dakota@sandia.gov
— User’s Manual, Reference Manual, Developers Manual - online

« Team Members
— Mike Eldred, Principal Investigator (R&D)
— Tony Giunta, Product Manager (applications & training)
— Shane Brown, Support Manager (software issues)
— Laura Swiler
— Brian Adams
— Danny Dunlavy
— Dave Gay
— Bill Hart
— Jean-Paul Watson
— Many other technical contributors (SNL-CA, SNL-NM, academia,...)
— Scott Mitchell, Dept. 1411 manager
— Marty Pilch, Dept. 1533 manager

Sandia
m National
24 Laboratories




