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Engineering Applications Motivation

• Most computer models for engineering applications are 
developed to help assess a design or regulatory 
requirement.  

• The capability to quantify the impact of variability and 
uncertainty in the decision context is critical, e.g. 

Prob(System Response > T) < 0.01

• This presentation discusses 5 uncertainty quantification 
(UQ) methods.

– Latin Hypercube sampling

– Analytic reliability methods

– Polynomial chaos expansions

– Dempster-Shafer theory of evidence

– “Second-order” probability analysis

• These methods are all implemented in DAKOTA
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Uncertainty Quantification Methods

• Goals of UQ methods: 
– Based on uncertain inputs (UQ), determine distribution 

function of outputs and probabilities of failure (reliability 
metrics)

– Quantify the effect that uncertain (nondeterministic) 
input variables have on model output

– Identify parameter correlations/local sensitivities, robust 
optima

– Identify inputs whose variances contribute most to 
output variance (global sensitivity analysis)

– Epistemic sensitivity analysis studies when the 
uncertain parameters only have bounds (intervals)
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DAKOTA Overview

Goal: answer fundamental engineering questions

• What is the best design?  How safe is it?

• How much confidence do I have in my answer?

Challenges

• Software: reuse tools and common interfaces

• Algorithm R&D: nonsmooth/discontinuous/multimodal, 
mixed variables, unreliable gradients, costly sim. failures

• Scalable parallelism: ASCI-scale apps & architectures

Impact: Tool for DOE labs and external partners, broad application 
deployment, free via GNU GPL (~3000 download registrations)

Nominal Optimized

iterative 
analysis…

Computational Model
• Black box: Sandia or commercial 

simulation codes
• Semi-intrusive: SIERRA multi-physics,

SALINAS, Xyce, Matlab, ModelCenter

response 
metrics

DAKOTA
optimization, uncertainty quant, 

parameter est., sensitivity analysis
parameters
(design, UC, 

state)
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Cantilever Beam Description

PP

x

y

• Goal:  understand how the deflection of the beam varies with 
respect to the length, width, and height of the beam as well as 
to applied load and elastic modulus of the beam

Variable Description Nominal Value
L Length 1 m
W Width 1 cm
H Height 2 cm
I Area Moment of Inertia 1/12 WH3

P Load 100 N
E Elastic Modulus of 

Aluminum 6061-T6
69 GPa
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Sampling

Simulation 
Model

Output 
DistributionsN samples of X

Measure 1

Measure 2

Input  
Distributions

N realizations of X

• Much work has been done to develop efficient methods of Monte Carlo 
sampling, including stratified sampling (Latin hypercube sampling) which 
spread the samples over the space, or quasi-Monte Carlo sampling

• Sampling is not the most efficient UQ method, but it is easy to implement 
and is transparent in terms of tracing sample realizations through multiple 
codes for complex UQ studies
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Sampling Results
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Sampling Results
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Analytic Reliability Methods

• Define limit state function g(x) for response metric (model 
output, e.g., Fmin) of interest, where x are uncertain variables.

• Reliability methods either

– map specified response levels (perhaps corr. to a 
failure condition) to reliability index β or probability p; or

– map specified probability or reliability levels to the 
corresponding response levels.

Mean Value (first order, second moment – MVFOSM)
determine mean and variance of limit state, translate to from p, β:

simple approx., 
but widely used 
by analysts; also 
second order 
formulations
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Analytic Reliability: MPP Search

Perform optimization in u-space (std normal space corr. to uncertain x-space) 
to determine Most Probable Point (of response or failure occurring)

G(u)

Reliability Index 
Approach (RIA)

...should yield better 
estimates of reliability 

than Mean Value 
methods
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Analytic Reliability Results
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Polynomial Chaos Expansions (PCE)

• Represent a stochastic process (the uncertain output f(X)) 
as a spectral expansion in terms of suitable orthonormal 
eigenfunctions with weights associated with a particular 
density

• The uncertain output f(X) is approximated by finite 
dimensional series based on unit Gaussian distributions

• In the expansion, the H terms are Hermite polynomials 
(multi-dimensional orthogonal polynomials), the  are 
standard normal random variables, and the coefficients ak

are deterministic but unknown.

• The job of PCE is to determine the coefficients ak.  Then, 
one has an approximation that can be sampled many times 
to calculate desired statistics
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Polynomial Chaos Expansions (PCE)

Conceptually, the propagation of input uncertainty through a model using PCE 
in a non-intrusive approach consists of the following steps: 

(1) Transform input uncertainties X to unit Gaussian random variables:  X  

(2) Assume a particular form for the orthogonal polynomials such as Hermite

(3) Generate many samples of X and .  These will generate a a set of linear 
equations to solve for the spectral expansion coefficients

for i = 1…N samples

(4) Once the coefficients ak are determined, take 1000s of samples of  and run 
them through the spectal expansion equation to obtain an approximation 
for f(X)  build up a CDF of f(X)

NOTE:  In step 3, DAKOTA can build the PCE approximation based on LHS 
samples, quadrature points, collocation points, or on a set of points that the 
user has determined.  These methods have pros and cons in terms of the 
efficiency and applicability.  This is an active research area which we are 
still investigating.
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Polynomial Chaos Results

PCE - Sampling
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Epistemic UQ

Second-order probability

– Two levels: distributions/intervals on 
distribution parameters

– Outer level can be epistemic (e.g., interval)

– Inner level can be aleatory (probability distrs)

– Strong regulatory history (NRC, WIPP).

Dempster-Shafer theory of evidence

– Basic probability assignment (interval-based)

– Solve opt. problems (currently sampling-based)

to compute belief/plausibility for output intervals
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Second-order Probability

Choose a possible realization, Ei, 
from epistemic variables

within interval bounds [L,U]

Sample from 
aleatory distribution with 
distribution parameters 

set at Ei

J samples

CDFj
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Second-order Probability

Variable Epistemic Mean Distribution
L [0.98, 1.02] m Normal(epistemic mean, 0.01) m
P [90,110] N Normal(epistemic mean, 5) N
E [41.4,96,6] GPa Normal(epistemic mean, 13.8) GPa

Second-order Probability
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Epistemic Uncertainty Quantification

• Epistemic uncertainty refers to the situation where one does not know 
enough to specify a probability distribution on a variable

• Sometimes it is referred to as subjective, reducible, or lack of knowledge 
uncertainty

• Initial implementation in DAKOTA uses Dempster-Shafer belief structures. 
For each uncertain input variable, one specifies “basic probability 

assignment” for each potential interval where this variable may exist.

• Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.5 BPA=0.2

BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2
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Epistemic Uncertainty Quantification

• Look at various combinations of intervals.  In each joint interval “box”, 
one needs to find the maximum and minimum value in that box (by 
sampling or optimization)

• Belief is a lower bound on the probability that is consistent with the 
evidence

• Plausibility is the upper bound on the probability that is consistent with 
the evidence

• Order these beliefs and plausibility to get CDFs

Variable 1

Variable 2

.5 .3 .2

0.1

0.2

0.7

Original LHS samples used 
To generate a surrogate

Million sample points 
generated from the 
surrogate, used to 
determine the max and 
min in each “cell” to 
calculate plausibility and 
belief
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Dempster-Shafer Example

Variable Intervals BPA

L [0.97, 1.03] m 1.0

P [85,115] N 1.0

E [27.6,110.4]GPa 1.0

Table 3a. Epistemic Variables for the Cantilever Beam Problem, Example 1

Variable Intervals BPA

L [0.97, 0.98] [0.98, 1.02] [1.02,1.03] m 0.25, 0.5, 0.25

P [85,90] [90,110] [110,115] N 0.25, 0.5, 0.25

E [27.6,41.4] [41.4, 96.6] [96.6,110.4]GPa 0.25, 0.5, 0.25

Table 3b. Epistemic Variables for the Cantilever Beam Problem, Example 2
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D-S Epistemic Uncertainty Results

Cumulative Belief and Plausbility Functions

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.05 0.10 0.15 0.20 0.25

Displacement (m)

C
B

F
/C

P
F  Plausibility Example 2

Belief Example 2

Belief Example 1

Plausiblity Example 1



22

Method Comparison

UQ Method
Characteristics

Sampling Analytic 
Reliability 

Polynomial 
Chaos

Dempster-Shafer Second- order 
Probability

Inputs specified 
by probability 
distribution

YES
Wide range of 
distributions

YES
Can handle many 
common 
distributions

YES, Only 
Gaussian 
distributions for 
many cases

NO No for outer loop; 
yes for inner

Correlations 
amongst inputs

YES In some cases YES NO No for outer loop; 
yes for inner

Number of 
samples required 
for M uncertain 
inputs

(10-20) * M
Note: the number of 
samples depends on 
the statistics of the 
output distribution 
being resolved.  For 
accurate mean 
estimates, 30 -50 
samples may be 
sufficient, whereas 
thousands of 
samples are needed 
to estimate a 99th

percentile

No samples needed; 
number of function 
evaluations depends 
on the problem 
formulation and 
type of 
optimization used

(10-20)*M to be 
able to solve for 
coefficients

100K- 1Mill.
Often ~100-
1000 LHS samples 
are taken to 
construct a 
surrogate, and the 
surrogate is 
sampled millions of 
times

50-100 in outer 
loop *
(10-20)*M in inner 
loop

Outputs Output distribution 
(CDF) with 
moments

Probability of 
failure for a given 
response level

Functional form of 
output:  Y=PCE(X). 
From this, one can 
calculate statistics 
of interest

Cumulative 
distribution 
function for 
plausibility and 
belief

Ensembles of 
CDFs; lower and 
upper bounds on 
possible CDF given 
epistemic 
uncertainty



23

Summary

• UQ is more than sampling 

• Sampling is at the basis of the more advanced 
methods

• Engineering analysts are starting to use more 
efficient aleatory methods and explore epistemic 
methods

• There is much confusion over the proper use and 
applicability of each method

• Example applications and case studies can be 
used to help deploy UQ methods
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DAKOTA Team Contact Info

• Web site:
– http://endo.sandia.gov/DAKOTA
– Email: dakota@sandia.gov
– User’s Manual, Reference Manual, Developers Manual - online

• Team Members
– Mike Eldred, Principal Investigator (R&D)
– Tony Giunta, Product Manager (applications & training)
– Shane Brown, Support Manager (software issues)
– Laura Swiler
– Brian Adams
– Danny Dunlavy
– Dave Gay
– Bill Hart
– Jean-Paul Watson
– Many other technical contributors (SNL-CA, SNL-NM, academia,...)
– Scott Mitchell, Dept. 1411 manager
– Marty Pilch, Dept. 1533 manager


