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I '%Im is Peridynamic Theory?
eridynamic theory is an approach to continuum

mechanics that uses differo-integral equations
without spatial derivatives rather than partial
differential equations.

— Reformulation of fundamental equations that applies
everywhere regardless of discontinuities

— Theory first published in 2000 by Stewart A. Silling

Journal of the Mechanics and Physics ol Solids

PERGAMON 48 (2000) 175-209

Reformulation of elasticity theory for
discontinuities and long-range forces
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y ; "Why Use Peridynamics?

" The fundamental partial differential equations
used in conventional finite element codes do not

apply at discontinuities such as cracks.

Real life:
Discontinuities can evolve in
complex patterns not known

in advance.

 Fragmentation occurs as a result of the initiation
and growth of multiple, mutually interacting
dynamic fractures. With peridynamics, cracks
initiate and grow spontaneously and there is no
need for externally supplied “crack growth 2 -
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ndamental Equation of
Peridynamic Theory

Configuration
Variables

c=x"-x

n=u(x',t)—u(x,t)

p(x)—u(x 1) = [ﬂ” f(u(x',t)—u(x,t),x'—x)dV'+ b(x,t)

where

p 1s the density at x, x 1s the position vector,

t 1s the time, u is the displacement vector,

R 1s the computational domain, f is the pairwise force function, and

b 1s the body force. @ Sandia
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al Modeling in Peridynamics

 The force per unit volume squared between
particles located a two points is given by the

pairwise force function (PFF) f . /

— Peridynamic interaction between two points is
called a bond.

— Constitutive properties of materials are given by
specifying the PFF.

 Thus, material response, damage, and failure are
determined at the bond level.

— Bond properties are derivable from measured
material properties including:
 elastic modulus, yield properties, and fracture toughness.
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ome Properties of the
- Pairwise Force Function

*“"Newton’s third law of motion implies that the PFF

satisfies F(=n.-E) =—f(,E) V&

* Furthermore, conservation of angular
momentum implies that the PFF satisfies

(+<)x f(n,¢)=0
 These properties imply that the PFF is of the form

f(m,&)=F@,&)y+¢) where F(—n,—¢)=F@.,¢)

* For isotropic materials, F' has the form

F(n,&)=1(p,q,r) where p=n+¢&|, q=yq&,r=¢
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__
}ﬂo-aastic (Plastic) Materials

**A PFF is said to be micro-elastic (ME) -plastic
(MP) if and only if there exists a scalar function,

St e =2 o)

A ME material is said to be proportional if and
only if the PFF is proportional to the stretch, s,

where S :(p—]/')/r.

* Failure occurs when s exceeds a value, s, called
the critical stretch.

 |sotropic, proportional ME materials have

| where g(s,7) 1s a piecewise
F(n,6)=—g(s,r) 3 .. . |
p linear function of s. @ Sandia
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lastic and -Plastic Materials

he difference between isotropic, proportional

micro-elastic and micro-plastic materials is their

behavior on unloading.

A

Bond Force

= Bond failure
Compression / Tension <J

»

Bond Force

Compression

/

g\ Loading

Bond failure
N _ Unloadiﬂg/
Ténsion

L Bond Stretch
X
W

Micro-Elastic

Yielding

Bond is a spring in these cases.

* For extreme loading analyses, we use isotropic,

proportional, micro-elastic (plastic) material Sandi

Bond Stretch

Micro-Plastic
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Numerical Method

i- The computational region is <=

discretized into nodes with a
known volume in the
reference configuration,
forming a grid of nodes.

 The fundamental equation is replaced by a
finite sum, which at time ¢, is

ﬁul —Zf(u —u; , X, —x)V +b', u' =u(x,t))
* For each node, the peridynamic interaction is
assumed to be zero outside a distance 6

called the horizon. @sma
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P
Mation in EMU Computer Code

 Peridynamics is implemented in the EMU
computer code.

- EMU s

— mesh free (no elements, just generate a grid of
nodes),

— Lagrangian (each node represents a fixed amount
of material),

— explicit (simple, reliable time-integration method),
— parallel (executes on multiple processors).
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- @PEMU Detonation Model

* 'Detonation model inputs:

— Location of detonation point(s) and initial detonation
time(s), density of unreacted explosive, and detonation
speed.

— Parameters for equation of state (ideal gas or JWL).

 Program burn model for detonation times.

 Detonation times computed prior to time advancement
using Huygen’s construction.

— Detonations can propagate around obstacles.
 Upon detonation:

— Reaction products are treated as ideal or JWL gas
undergoing an adiabatic expansion.

— Energy conserved using volume-burn algorithm.@ Sandia

National
Laboratories



s as Peridynamic Materials
Ince detonation products are gases, gases

must be modeled as peridynamic materials.

« Consideration of the work required to stretch
in bond k leads to the following PFF for a gas:

—m—1
f. = _65(X) (ij X3 where

vV

T

an 1sentrope,

X:’Z)O: Z[p]) AV,

, V'1s volume, P, 1s pressure along

—1-3/m

,V:ZAVZ.

p 1s the dens1ty in deformed conﬁguratlon
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Program Burn

* Reliable, time-tested method (since 1950’s)
 Huygen’s Construction (in two dimensions)
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Pressure (P)

olume Burn Algorithm

j YRV + j S PV = I X aY 4

By Ity 150

« Algorithm is statement of energy conservation.
* P, is density of unreacted explosive.

« Rayleigh line, reaction product Hugoniot, and reaction
product isentrope are tangent at the CJ point.

For an ideal gas, Py, = 72 P,
(VoPso)

i

(VCJ’ P CJ)

-

Rayleigh Line, R(V)

Isentrope for Detonation Products
Referenced to P,, Pg(V)

/

(Vo Po) \

Isentrope for Detonation
Products, Ppyp(V)

Specific Volume (V) @ Natrl
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}‘“WL Equation of State

 JWL Equation of State (EOS), pressure

RX X - expansion
l

Remaining quantities

. JWL ters.
- Expansion Isentrope: pressure - PAaneEE

B(X) = ) A +ox @
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g
g %t Loading of a Structure

Structure has 6-ft thick walls and floor slab. The floor slab is 40 ft by 52 ft. The
walls are 45 ft above the floor. All concrete is reinforced with #18 rebar at 12-in
spacing. A cubic yard of explosive with unreacted density 1785 kg/m?3 and

detonation speed 8747 m/s is placed on the floor at the center of the wall and

detonated at time zero.
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steel closure disk

EMU Model

steel fragmenting shell
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Predictive Capabilit i
Biost Extimate-+ Uncertainty 1.25in

A

Application of 2 4

— Uncertainty Quantification Activities
Model Uncertainty Sensitivity Analysis  Application Environments
Maodel form uncertainty  Initial conditions Normal eénvironment
i M S e b i
Exmaﬂunumﬂalnty ¥ EXpIOSIVe
Validation Activities
'illlﬂadnn&p-dmu leﬁlﬁmslmmom
4 in
Metal
Cylinder

Verification: Process of determining that a model !

<«

implementation accurately represents the developer’s 1in
conceptual description of the model and the solution to
the model.

Cross Section of
Validation: Process of determining the degree to which (E3yllrd§r Filled with
a model is an accurate representation of the real world Xplosive |
from the perspective of the intended uses of the model. @ Santia
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esearch and Development

urrent R&D includes

modeling fluids, composite materials, and explosive materials and
explosive loading

verification and validation
software engineering

investigating use of existing constitutive models in state-based
peridynamics to represent stress-strain and yield behavior in EMU

 Future R&D possibilities include

nanoscale to continuum coupling using the embedded atom
method

mechanical failure of nanoscale systems

inclusion of phenomenology (fire, heat transfer, material
degradation, etc) to provide a comprehensive methodology for
vulnerability assessment of critical structures

 URL - http://www.sandia.gov/iemu/emu.htm
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