

IEMC 2007

Semantic Web Technologies for Knowledge Management of Small-Scale Virtual Manufacturing Enterprises

August 1, 2007

John S. Bowers, John M. Linebarger, J. Cecil

Content

- **Introduction**
- **Contribution**
- **Virtual Enterprises**
- **Virtual Manufacturing Enterprises (VME)**
 - SNL Example
- **Information-Based Manufacturing**
- **Semantic Web**
- **Related Work**
- **Semantic Web for Small-Scale VMEs**
- **Conclusion**

Introduction

- Enabled by advances in global information infrastructure, businesses have adopted an organizational paradigm known as a Virtual Enterprise (VE).
- A Virtual Manufacturing Enterprise (VME) is a type of VE that is focused on the manufacture of products.
- Information Technology (IT) and knowledge management (KM) often function as the glue that hold VEs together.
- The larger the number of partners, the greater the knowledge management problem, because of differences in technology, terminology, and data formats.
- These knowledge management issues can be subdivided into three categories: standardization, automation, and integration.

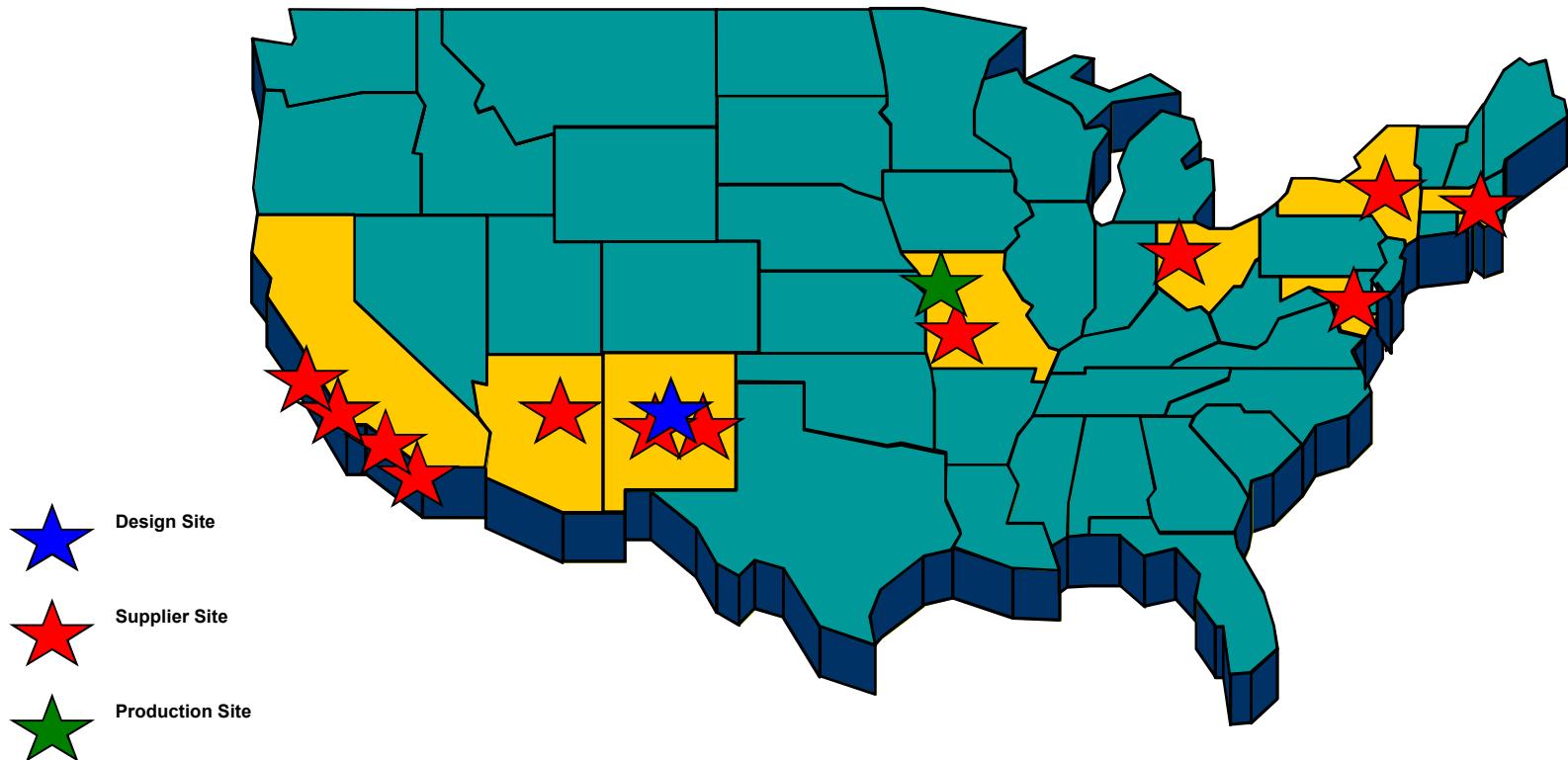
Contribution


- The adoption of common standards for technology, terminology, and data is an ideal solution to the knowledge management problem, but is rarely achievable across organizational boundaries in practice.
- This is especially true when the VME is relatively small-scale, has heterogeneous information technology systems, and accounts for a small percentage of each of their suppliers' business.
- The contribution of this paper is:
 - to review VME-related research work in an emerging area called “the Semantic Web”
 - to note that existing research has not focused specifically on the use of the Semantic Web for small-scale VMEs
 - to propose several strategies for using Semantic Web technologies for small-scale VMEs to address the key knowledge management issues of standardization, automation, and integration.

Virtual Enterprises

- **Definition:** An organization model that is an opportunistic (or temporary) network of core competencies throughout several independent, geographically dispersed organizations, which include suppliers and customers that perform as a single enterprise.
- **Key characteristics include:**
 - Partnering, collaboration, cooperation
 - Agility and adaptability
 - World-class capabilities and technologies
 - Geographic distribution and borderless operations
 - Trusting and trustworthy behavior
 - Integrated business development, project management, systems engineering, and information technology capabilities

Virtual Manufacturing Enterprises



- The manufacturing industry strives to be lean, agile, and global.
- A VME is a type of VE with a focus on product, which is the outcome of collaboration amongst the VE partners.
- VME characteristics:
 - Partners should belong to different organizations with different areas of expertise.
 - Partners should be geographically distributed.
 - Heterogeneous computer-based systems.
 - Software applications used must be implemented in a variety of software languages.
 - Information Technology (IT) must support seamless information exchange.

SNL VME

Characteristics (approximately):

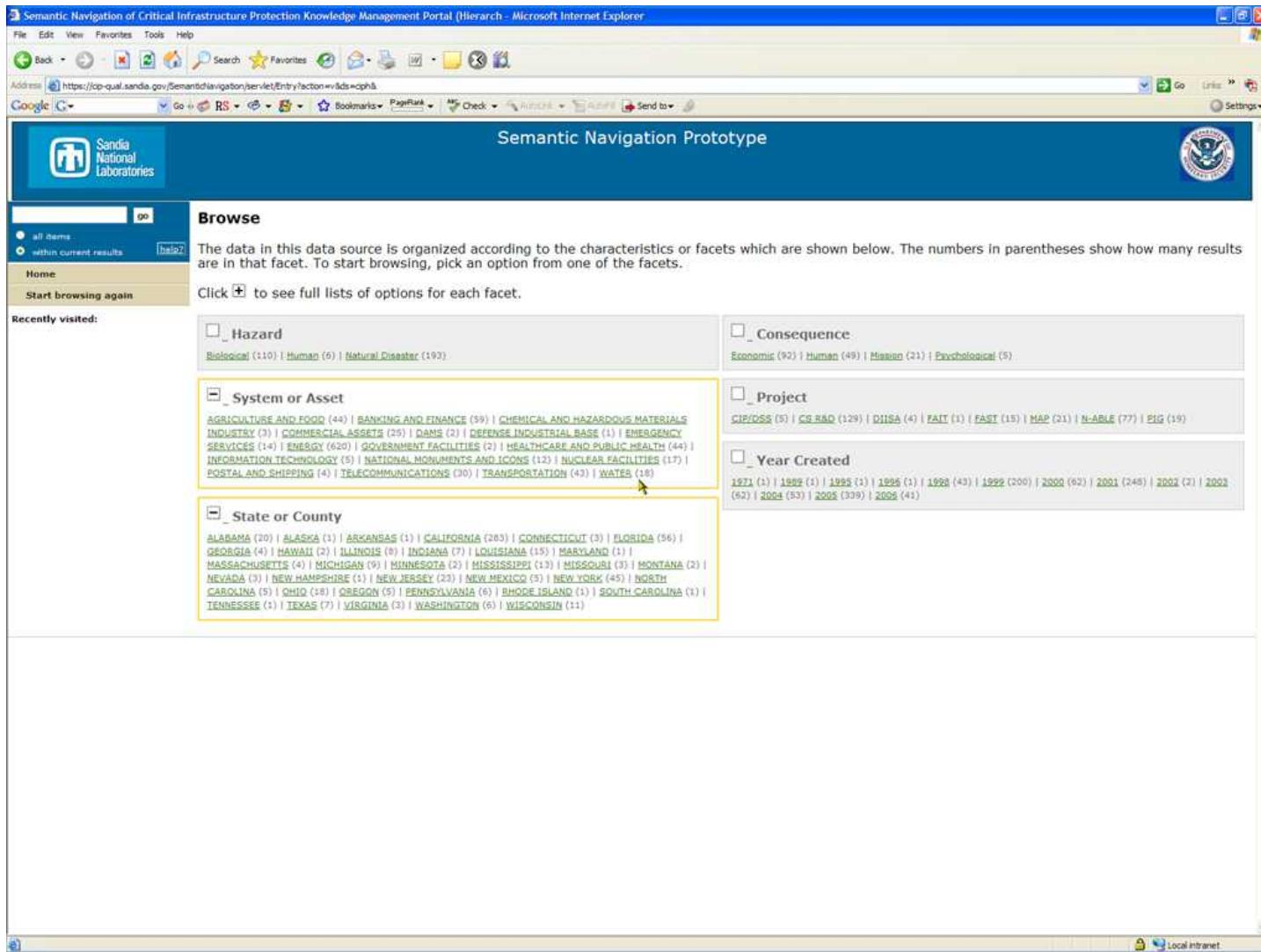

- One design site, twelve suppliers, one production site
- 100 unique components, lot sizes between 100 and 300
- Discontinuous production
- Stringent quality and reliability requirements

Information-Based Manufacturing

- Information Technology (IT) and knowledge management (KM) often function as the glue that hold VEs together.
- This is especially the case for VMEs because of the large amount of richly interconnected information and data that needs to flow seamlessly between the customer and its suppliers.
- The larger the number of suppliers the greater the knowledge management problem, because of differences in technology, terminology, and data formats.
- In recent years, research in an emerging interdisciplinary subject called Information-Based Manufacturing (INBM) has catalyzed the adoption of cutting edge IT to support VMEs.
 - INBM can be described as a field which emphasizes the study and use of techniques, frameworks and technology dealing with (1) modeling; (2) visualization and simulation; and (3) exchange of information as it pertains to product and process design activities across a range of domains.
 - INBM principles, concepts and practices are beginning to have a substantial global impact on the way in which products are designed and manufactured.
 - Semantic Web technologies, the focus of this paper, fall under the category of Information Exchange within INBM.

Semantic Web

- The Semantic Web is the brainchild of the inventor of the Web itself, Sir Tim Berners-Lee. He envisions the Semantic Web as a Web of meaning, not just a Web of links.
- The semantics of a Web page are specified by tagging them with entries taken from a shared ontology.
- An ontology is a network map of terms in a shared concept space, made logically rigorous to enable automatic inferencing. Intuitively, an ontology can be conceived of as a network representation of the key terms in a domain, and the logically precise nature of the relationships between the terms. In that sense, an ontology forms a shared cognitive model for a domain.
- Semantic Web technologies are a promising mechanism for ontology-driven integration of heterogeneous data sources in a VME. Such technologies enable integration at a deeper, semantic level of common meaning, instead of just at a shallower, syntactic level of common data formats.



Semantic Web (*cont'd*)

- **Key Semantic Web applications**
 - Enterprise Information Integration
 - Semantic Navigation
- **Key Semantic Web standards**
 - Resource Description Framework (RDF)
 - Resource Description Framework Schema (RDFS)
 - Web Ontology Language (OWL)
 - SPARQL (Query language for the Semantic Web)
- **The standards body for the Semantic Web is the World Wide Web Consortium (W3C)**

Semantic Navigation Application

Semantic Navigation of Critical Infrastructure Protection Knowledge Management Portal (Hierarch - Microsoft Internet Explorer)

File Edit View Favorites Tools Help

Address https://cp-qual.sandia.gov/SemanticNavigation/service/Entry.action?wids=cpjh&

Google C... Go RS Bookmarks PageRank My Check Autocomplete Alert Send to Settings

Semantic Navigation Prototype

Sandia National Laboratories

Recently visited:

Home Start browsing again

Browse

The data in this data source is organized according to the characteristics or facets which are shown below. The numbers in parentheses show how many results are in that facet. To start browsing, pick an option from one of the facets.

Click to see full lists of options for each facet.

Hazard

[Biological \(110\)](#) | [Human \(6\)](#) | [Natural Disaster \(193\)](#)

System or Asset

AGRICULTURE AND FOOD (44) | BANKING AND FINANCE (59) | CHEMICAL AND HAZARDOUS MATERIALS INDUSTRY (3) | COMMERCIAL ASSETS (25) | DAMS (2) | DEFENSE INDUSTRIAL BASE (1) | EMERGENCY SERVICES (14) | ENERGY (620) | GOVERNMENT FACILITIES (2) | HEALTHCARE AND PUBLIC HEALTH (44) | INFORMATION TECHNOLOGY (5) | NATIONAL MONUMENTS AND ICONS (123) | NUCLEAR FACILITIES (17) | POSTAL AND SHIPPING (4) | TELECOMMUNICATIONS (30) | TRANSPORTATION (43) | WATER (18)

State or County

ALABAMA (20) | ALASKA (1) | ARKANSAS (1) | CALIFORNIA (283) | CONNECTICUT (3) | FLORIDA (56) | GEORGIA (4) | HAWAII (2) | ILLINOIS (9) | INDIANA (7) | LOUISIANA (15) | MARYLAND (1) | MASSACHUSETTS (4) | MICHIGAN (9) | MINNESOTA (2) | MISSISSIPPI (13) | MISSOURI (3) | MONTANA (2) | NEVADA (3) | NEW HAMPSHIRE (1) | NEW JERSEY (23) | NEW MEXICO (3) | NEW YORK (45) | NORTH CAROLINA (5) | OHIO (18) | OREGON (5) | PENNSYLVANIA (6) | RHODE ISLAND (1) | SOUTH CAROLINA (1) | TENNESSEE (1) | TEXAS (7) | VIRGINIA (3) | WASHINGTON (6) | WISCONSIN (11)

Consequence

Economic (92) | Human (49) | Missing (21) | Psychological (5)

Project

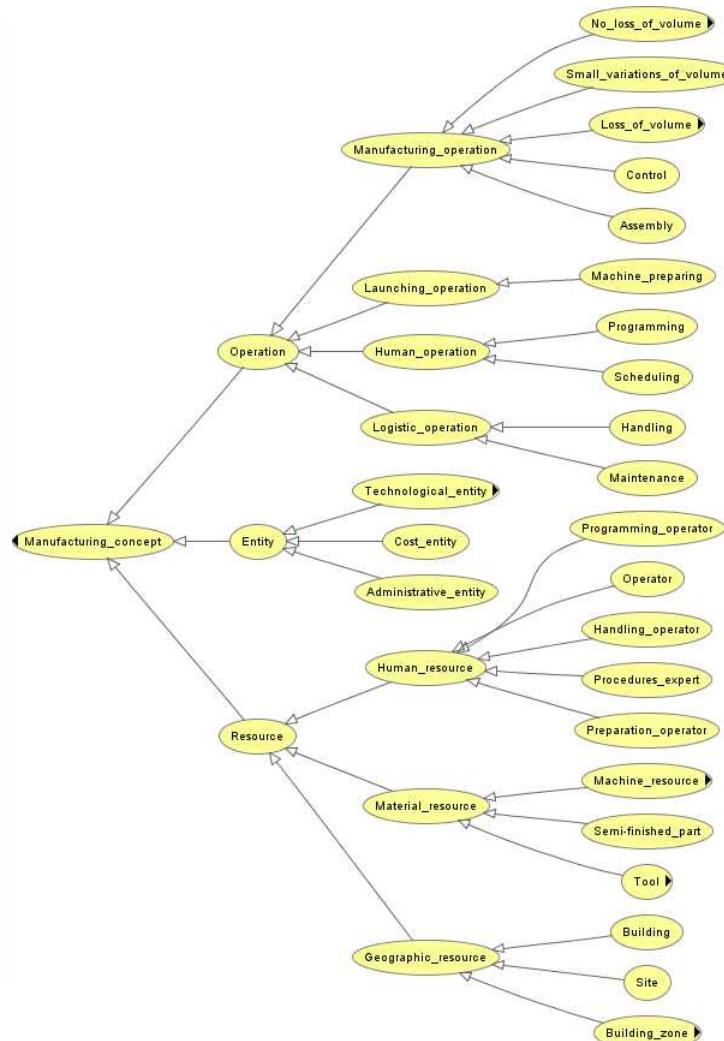

CIP/DSS (5) | CS RAD (129) | D11SA (4) | FAIT (1) | FAST (15) | MAP (21) | N-ABLE (77) | PIG (19)

Year Created

1971 (1) | 1989 (1) | 1995 (1) | 1996 (1) | 1998 (43) | 1999 (200) | 2000 (62) | 2001 (246) | 2002 (2) | 2003 (62) | 2004 (53) | 2005 (39) | 2006 (41)

Local intranet

Sandia National Laboratories


Related Work

- Some of the work on the use of semantic technology in the engineering and supply chain domains predates the Semantic Web.
 - The Mediator system by Gaines *et al.*
 - The Active Catalog work of Kim *et al.*
- Research in a manufacturing context has focused on three areas
 - The need for ontologies and information sharing (e.g., Nabuco *et al.*)
 - The use of ontologies for a segment of the manufacturing life-cycle (e.g., Lin, *et al.*; Gobinath and Cecil)
 - Detailed implementation based on Semantic Web technologies to support the complete life-cycle of products in a specific domain (e.g., Hindriks *et al.*)
- A Semantic Web-based upper-level (or foundational) ontology for manufacturing, called MASON, has recently been proposed.
- No existing research has focused specifically on the use of the Semantic Web for small-scale VMEs

Portion of Top-Level of MASON Ontology

- Manufacturing_concept
- ▼ ● Entity
 - Administrative_entity
 - Cost_entity
 - ● Technological_entity
- ▼ ● Operation
 - ● Human_operation
 - ● Launching_operation
 - ● Logistic_operation
- ▼ ● Manufacturing_operation
 - Assembly
 - Control
 - ● Loss_of_volume
 - ● No_loss_of_volume
 - ● Small_variations_of_volume

Semantic Web for Small-Scale VMEs

- Since a small-scale VME generally accounts for a small percentage of its suppliers' business, the burden falls on the VME to perform the semantic integration, and even to generate the semantic metadata required for such integration.
- An *ontology mapping* approach, as opposed to an *ontology imposition* approach, may be an effective semantic integration strategy for small-scale VMEs.
 - In ontology mapping, a reference or normative ontology is created from the standpoint of the customer, and separate descriptive ontologies are developed for each supplier.
 - The ontologies for each supplier are then mapped to the reference ontology for the customer.
 - A mapping approach enables semantic navigation from multiple perspectives, using both customer and supplier ontologies.

Semantic Web for Small-Scale VMEs (cont'd)

- The use of **lightweight ontologies** that cover only the most critical areas of information exchange between customer and supplier has several advantages.
- Reuse other industry-standard ontologies
 - Dublin Core for document metadata
 - FOAF (“Friend of a Friend”) for people information
- Use open source or community edition tools
 - Protégé ontology editor from Stanford University
 - Jena ontology application programming interface (API) for the Java programming language, from HP Bristol
 - Pellet reasoner from Clark & Parsia
 - MySQL database for ontologies and metadata
- Expose legacy data as a **Semantic Web Service** using OWL-S.

Conclusion

- The contribution of this paper began with a review of VME-related research work in an emerging area called “the Semantic Web.”
- The existing research has not focused specifically on the use of the Semantic Web for small-scale VMEs.
- Several strategies for using Semantic Web technologies for small-scale VMEs were proposed in order to address the key knowledge management issues of standardization, automation, and integration.

QUESTIONS?