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• Historical perspective
• Issues of Scale

• Micro-System Timeline
• Commercial Applications

• Fabrication Technologies

Topics
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• “There’s Plenty of Room at the Bottom”, 1959, 

California Institute of Technology

– 2 Challenges:

• Construct a working electric motor able to fit in a 1/64 inch 

cube

• Print text at a scale that the Encyclopedia Britannica could 

fit on the head of a pin

Vision of Micro-Systems

Richard P. Feynman                                
(1918-1988)

William McLellan, 1960

T. Newman, 
R.F.W. Pease, 
1985
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Effect of Reduction in Scale

Why does a change is scale matter?
• Entering different physics regimes at a 

particular scale.
• Physical phenomena scale at different rates 

which changes their relative importance.
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• Casmir Q 1/S4

• Van der Waals Q 1/S3

• Surface Tension Q 1/S3

• Electrostatic Q 1/S2

• Magnetic Q S0

• Elastic stiffness Q S

• Inertia Q S3

• Gravity Q S3

Forces Scaling (S=1 0.001)

Macro Domain

Nano Domain

Micro Domain

Physical Phenomena Scale at different rates
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Physical Phenomena Change:
The breakdown of Continuum Model

• Mean Free Path of air at STP - 65 nM

• Material crystal sizes in polycrystalline material ~300-

500 nM 
• Magnetic Domains ~10-25 micron

• Silicon lattice constant  5.43 A
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Newly Relevant Phenomena

• Brownian Noise: (thermal noise, Johnson noise) 

atomic vibrations. Significant for MEMS sensors

• Paschen’s Effect: Breakdown voltage increases as the 

pressure*gap product decreases.

• Electron Tunneling: Quantum mechanical effect in 

which entities such as electrons can “tunnel” across 

small (~nm). Displacement transduction technique

Ref: Ch 4, Scaling Issues for MEMS, “Micro Electro 
Mechanical System Design,” J. J. Allen, CRC Press, 2005



Introduction
Page 9
© 2005 Sandia National Laboratories

Timeline of Key Micro-System Developments 

Adapted from: Micro Electro Mechanical 
System Design, J. Allen, CRC Press, 2005

Early Products based upon the 
Piezoresistive properties of Silicon

Beginnings of  Microelectronic Technology

Feynman's Visionary Talk

MEMS Commercial 
Products 
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MEMS Commercial Applications

Pressure Sensor
Bosch MEMS

Ink Jet Cartridge
Hewlett Packard

Accelerometer
Analog Devices

Digital Mirror Device
Texas Instruments

Micromirror switch
Lucent Technologies
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TI DMD Light Switch

• Each light switch has an 
aluminum mirror (16 m square) 
that can reflect light in two 
directions

• Rotation of the mirror occurs 
from an electrostatic attraction 
between the mirror and 
underlying memory cell

• System occupies 90% of 
projected image – mirrors 
separated by only 1 m
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Agilent Technologies RF MEMS
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IBM Millipede Storage System

• High density data storage 

(100 Gb/in2)

• AFM tip writes and reads 

data

• Bit set by melting 

depression into polymer 

medium

• X-Y stroke for tip array of 

100 m
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MESA-Fabricated MEMS 
“First in Space”

2592 SUMMiT V™ 
die w/ Buried 
Interconnects

4x4” Johns Hopkins/APL
Thermal Regulator

3 NASA/Goodard
ST5 Microsats

Launched 3/22/06

Experimental 
satellites monitor 

space weather

"This is the first time a fully space-
qualified device of this type has ever 
been flown, and the first to be flown 
on the outside of a satellite."
- Ann Darrin 
Applied Physics Laboratory 
Program Manager
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A Continuum of Microsystems Fabrication Technologies

• Materials:  Most metals, alloys, 
and superalloys & most 
polymers and ceramics

• Processing:  One piece at a time

• Assembly:  Assembly required

• Geometry:  Full three-
dimensionality

• Materials:  mostly silicon based and metal coatings

• Processing:  Many Parts produced at wafer level

• Assembly:  Pre-assembled through standard 
processing

• Geometry:  Two-dimensional, multi-level
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10-2

Precision 
Machining

LIGA
Bulk Micro-Machining

Surface 
Micro-
Machining

• Materials:  Limited metals, ceramics, and 
polymers

• Processing:  Parts produced at wafer level

• Assembly:  Precision assembly or non-
standard processing for multi-levels

• Geometry:  Deep two-dimensionality or 
multi-level
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Surface 
Micromachining

Silicon Substrate

Poly Si

Three Dominant MEMS Fabrication 
Technologies

structures formed 
by deposition and 
etching of sacrificial 
and structural thin films.

[100]

Bulk 
Micromachining

LIGA

Wet Etch Patterns

Dry Etch Patterns Mold

Silicon
Substrate

3D structures formed 
by wet and/or dry 
etching of silicon 
substrate.

3D structures formed 
by mold fabrication,
followed by injection 
molding/electroplating
.Groove Nozzle

p++ (B)

Membrane

[111]

Silicon
Substrate

Channels Holes

54.7o
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Bulk Micromachining

• Key concept: Mechanical part is formed out of the substrate material

• Example: Bulk-micromachined pressure sensor etched w/KOH or EDP
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IonNeutral Volatile Etch Product

Conventional
Lithography

Initial 
Deposition

Deposition

Final Etch 
Feature

Initial 
Etch

Ion
Neutral

Volatile Etch Product

Basic Process
• High-aspect ratio Si 

etching

• Anisotropic profiles

• Smooth sidewalls

• Smooth surface 
morphology

• Deep structures 

• Standard resist 
patterning

• Room temperature 
etching

• High etch selectivity to 
resist

Bulk Micromachining: Deep Reactive Ion Etch (DRIE
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LIGA Processing Steps

• X-rays from a synchrotron are incident on a mask 

pattered with high Z absorbers.

• X-rays are used to expose a pattern in PMMA, normally 
supported on a metallized substrate.

• The PMMA is chemically developed create a high aspect 

ratio, parallel wall mold.

• A metal or alloy is electroplated in the PMMA mold to 
create a metal micropart.

• The PMMA is dissolved leaving a three dimensional metal 

micropart. This micropart can be separated from the base 

plate if desired.

* PMMA - polymethylmethacrylate

100 m shafts

75 m thick 
Nickel 
Gears
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1 cm

Z-Axis Gyro

XY-Axis
Gyro

XYZ
Accelerometer

Fabricated: Sandia National Laboratories

Designed: University of California, Berkeley Sensor & 
Actuator Center

Integration of Electronics and MEMS 
Technology (IMEMS)

Digital Micromirror Device
Texas Instruments

Analog Devices ADXL Accelerometer

• Issues for Integration of electronics & MEMS

– Large vertical topologies

– High Temperature Anneals

• Strategies for IMEMS processes

– Microelectronics first: (ex. TI DMD™)

– Interleave the Microelectronics and MEMS fabrication:

(ex. Analog Devices ADXL)

– MEMS fabrication first: (ex. Sandia IMEMS Process)


