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The problem of navigating in and interacting with an 
unstructured environment presents challenges to 
traditional learning and control approaches.  However,
the nature of emergency response situations requires that 
autonomous robots’ performance be robust to unmodeled 
environments and unexpected challenges.  One approach 
to providing this capability is presented here: S-Learning.    

S-Learning, an experience-based learning algorithm,
is implemented in the control of a seven degree-of-
freedom robotic arm.  S-Learning stores sequences of 
discretized (discrete in time), quantized (discrete in 
magnitude), and categorical (uninterpreted) sensor data 
and actuator commands.  Handling the data in this way 
removes explicit models about the environment, robot 
kinematics, dynamics, and structure.  Instead, a 
bootstrapped model is generated on the fly by observing 
sequences of sensory and command events.  S-Learning is 
based on a neuro-psychological model of learning and 
movement control in humans and seeks to mimic the 
strategies used by the brain to solve this problem.

I. INTRODUCTION

Emergency response environments are rarely well-
characterized, level, and free from obstruction.  The 
ability of an autonomous robot to handle novel 
environments is essential to robust performance in an 
emergency situation.  Additionally, the very 
environmental hazards that require robotic intervention 
(e.g. unstable rubble, sharp debris, explosive materials, 
radiation) can damage the robot.  Ideally, robot 
responders would be robust to failed sensors, frozen 
actuators, misaligned cameras, and joint obstructions to 
the greatest degree possible.  This work describes a robot 
control algorithm designed to achieve this goal.

The field of “learning to learn,” also termed 
generalization or bias learning, takes machine 
performance a step further than many learning 
algorithms.1  Generalization algorithms seek to improve 
system performance not just on tasks for which the 
systems have explicitly trained, but also on novel, 
unrelated tasks.  Humans are often able to learn a task 
after only one or two exposures due to the ability to 
generalize from previously learned tasks.  Generalization 
algorithms attempt to imbue automated systems with this 

same ability.  Common approaches include connectionist 
networks,2,3 statistical (including Bayesian, memory-
based, and Markovian) methods,4,5,6 dimensionality 
reduction,7 and modified reinforcement learning 
techniques.8,9 Within this set of generalization 
algorithms, a subset is explicitly biologically-motivated.  
These mimic the human brain, which serves as an 
existence proof for solutions to daunting perception and 
control problems.  S-Learning falls into this category.

I.A. Relation to Temporal-Difference techniques

S-learning is a variant of temporal-difference (TD) 
learning.  It is superficially similar to Q-learning,10

another TD algorithm, but involves sequences of discrete 
events (hence the S).  TD algorithms are typically 
effective at discovering optimal sequences of actions in 
unknown environments.  However, existing algorithms 
only address the static TD problem, in which the states 
that result in reward or punishment are fixed.  This is 
equivalent to a control system that has a fixed goal that 
does not vary over time.  And while multiple instances of 
a static TD algorithm, such as Q-learning, can be 
employed to account for multiple goal states, the 
experience gained while training one does not transfer to 
others in a straightforward way.  Such an approach 
typically requires a separate training period for each 
instance of the algorithm.  Even when this multiple-
instance approach is successful, it still does not aid the 
system in reaching unfamiliar goal states.

The distinguishing characteristic of S-learning is that 
it continually records recurring patterns to build a library 
of past experiences.  This library allows a goal-seeking 
agent to piece the patterns together to form a complete 
path to a goal.  The strength of this approach is that the 
goal can be any previously-visited state, not just one or a 
few that were hard-coded from the start.  Thus S-learning 
can also handle changing goals, multiple goals, and even 
conflicting goals and provides a potential solution to the 
dynamic TD problem.

I.B. Relation to Markov Models

In an S-Learning sequence library, a set of sequences 
of length two can be accurately represented in a Markov 
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model.  The likelihood of transitioning from state A to 
state B can be inferred from the sequence set and could 
alternatively be represented in matrix form.  Similarly, 
longer sequences could be represented as higher-order 
Markov models.  It is accurate to describe an S-Learning 
sequence library as a shorthand way of representing a 
series of Markov models of order one to order N-1, where 
N is the maximum sequence length.  The advantage of a 
sequence library is that it is concise.  A first order Markov 
model in a system with M possible states can be 
represented by a M x M matrix, a second order Markov 
model by a M 2 x M matrix, and an N-1 order Markov 
model by a M N-1 x M matrix.  For the system simulated in 
this paper, in which N = 7 and M = 24141, this 
representation quickly becomes computationally 
burdensome.  In this sense, a sequence library is a sparse 
matrix coding for a multi-order Markov model.

II. METHOD

Note:  A description of the S-Learning algorithm has 
been previously published, e.g. 11, but is briefly presented 
here for clarity. 

Initially, the controller has no experience on which to 
draw.  In simulation, the S-Learning algorithm issues 
random commands until the goal is achieved, at which 
point it resets the simulation and attempts to complete the 
task again.  Each time the goal is achieved, the sequence 
of states (sensor readings and commands issued) leading 
up to the goal are stored in a sequence library.  Each 
sequence can be envisioned as a trail of discrete states that 
result in a goal.  During future attempts, each state 
encountered during exploration is compared against 
previous successful state-trails.  If there is a sufficiently 
close match, S-Learning issues the same sequence of 
commands that had previously proved successful.

II.A. Architecture

S-Learning is at the core of a biomimetic Brain-
Emulating Cognition and Control Architecture (BECCA, 
Fig. 1).  BECCA consists of an Agent, a Planner, a World, 
and an S-Learning Engine, each of which is briefly 
described below.

II.A.1. Agent
The Agent sets goals for the system.  The goals are 

expressed in terms of the sensory state information 
available from the World.  Goals can be a specific state, a 
set of states, or a portion of a state.  Multiple, even 
conflicting, goals can exist.  Goals can change over time, 
and the Agent can use new state information to decide 
when and how to change them.  The current set of goals is 
available for use by the Planner.

Fig. 1.  Brain-Emulating Cognition and Control 
Architecture (BECCA), featuring S-Learning: a block 
diagram representation.  The S-Learning algorithm is used 
as an engine to bootstrap a model of the World.  This 
model is referenced by the Planner and uses new state 
information to refine its World model in order to achieve 
goals provided by the Agent.

II.A.2. Planner
The Planner determines which (if any) actions to take 

at any given point in time.  It takes in goals from the 
Agent and current state information to inform its 
decisions.  The Planner queries the S-Learning Engine in 
order to predict the results of possible courses of action.  
Exploratory actions are also considered, particularly if the 
current state is unfamiliar and the S-Learning Engine 
cannot predict a path to a goal state.  After a course of 
action is determined, the Planner issues commands to the 
World and reports those actions in a state vector.

II.A.3. World
The World is the external system that is being learned 

and controlled.  It is analogous to the Plant and 
environmental disturbances in classical control system 
formulations.  The World can either be simulated or 
instantiated in hardware, but in either case, the only 
information it provides back to the rest of BECCA is 
through its sensors.  In simulations, BECCA does not 
have direct access to the World's internal and state 
variables.

II.A.4 S-Learning Engine
The S-Learning Engine uses the regularly-updated 

stream of state information to bootstrap a model of the 
World.  There is no explicit model, assumed dynamics, or 
implied structure.  Instead, the S-Learning Engine 
observes repeated state sequences, particularly those that 
result in a goal state.  These state sequences are stored in 
a library, which is referenced by the Planner during action 
planning.  The S-Learning Engine also keeps track of the 
sequences that the Planner selects as action plans.  If a 
sequence leads to a goal, as predicted, it is reinforced by 
weighting more heavily in the sequence library.  If a 
sequence fails to lead to a predicted goal, its weighting in 
the library is reduced.  After a number of failed 



predictions, a sequence becomes sufficiently weak that it 
is removed from the library.

II.B. S-Learning Algorithm

S-Learning provides a single mechanism for handling 
learning, memory, and prediction in BECCA.  The 
learning and memory behavior of S-Learning emerge 
from the way new states are incorporated into the 
bootstrapped world model.  Initially, the sequence library 
has no prior experiences and contains no state sequences.  
When a goal state is achieved (presumably though the 
exploratory efforts of the Planner) the sequence of events 
leading up to the goal are stored in the library.

Control in S-Learning is straightforward.  All 
sequences that contain the most recently observed state(s) 
and terminate in a goal state are candidates for plans.  The 
Planner selects one plan from the candidate set (if there is 
more than one) on the basis of some criterion, say 
distance to goal or past success rate.  

Other, more sophisticated control methods based on 
the sequence library are possible as well.  For instance, 
daisy-chaining sequences together, creating trees of 
possible plans, would allow the Planner to create novel 
plans and generate a series of sub-goals.

If the Planner finds an appropriate sequence from the 
library to serve as a basis for a plan of execution, then it
executes the sequence of commands contained in that 
sequence.  The planner has an expectation that a goal will 
be achieved at the end of that sequence.  If a goal is not 
achieved when expected, that sequence of events is 
appended to the library, allowing future prediction of the 
same failure.

If a goal is achieved when expected, then the 
successful sequence is compared against the sequence 
library.  If the observed sequence is significantly different 
from any sequence in the library, the observed sequence 
will be appended to the library.  

II.C. Simulation

S-Learning was implemented in a simulated seven 
degree-of-freedom robot arm, based on physical 
PowerCube hardware (Amtec GmbH, Germany).  
MATLAB (Mathworks, Natick, MA) served as the 
computation engine for the simulation.  The robot 
consisted of six serial rotary links, which terminated in a 
parallel-finger gripper.  (Fig. 2)  The robot was mounted 
on a table, within reach of a salt shaker-sized block. 

The simulation consisted of two parts, a physical 
contact model and a visual representation.  In both cases, 
each link of the robot was treated as a rigid body, and its 
position relative to the other links was described 
completely by the kinematic constraints and position of
each joint.   Due to the high mechanical impedance and 
non-backdrivability of the joints, links were considered to 

Fig. 2.  The PowerCube robot arm a) in a photograph and 
b) in an image captured from the MATLAB simulation. 

have no inertia; inertial effects were negligible in 
determining movement dynamics.  As a result, the set of 
seven joint positions provided a complete state 
description of the arm.  The visual representation of the 
model showed the configuration of the arm in the current 
state in relation to the target block.

The physical contact model used of a number of 
discrete spheres to represent the physical volume 
occupied by each rigid link.  When the contact spheres 
from one link impinged on those of another, contact 
forces were generated. These forces were computed over 
the entire link and propagated, link by link, down the 
kinematic chain to the base.  If the forces or torques at 
any given joint exceeded a threshold in the direction of 
that joint’s movement, they prevented the joint from 
moving against that load.  The net effect of this was that
the arm was not capable of driving its gripper into the 
table, or of “crushing” the target block.

Discrete commands were issued to each joint 
consisting of a position (angle) step in one of 33 
magnitudes.  This yielded 337 (>1010) possible commands.  
The commands were checked to ensure that they did not 
attempt to drive any joint past its position limits.  This 
approach was motivated by the physical hardware; 
discrete position commands are also the accepted 
command format for the actual PowerCube arm.  When a 
command was issued, a small amount of stochastic 



command noise was added, resulting in a non-
deterministic system.  This jitter provided a means of 
exploring a local neighborhood of the state space.  In 
addition, when a sequence of commands was being 
executed, two subsequent commands would, on random 
occasions, be executed simultaneously.  This 
“carelessness” served to drive learned sequences toward 
their optimal length.  If a learned sequence could be made 
shorter, it eventually would be.

II.C.1. Handling sensory information

The vector of sensory information supplied to the 
World Model contained joint position, a “goal achieved” 
flag, and coarse vision from a fixed overhead camera.  
(Table I) All of the sensor data used in simulation is 
readily available on the physical robotic hardware 
platform.  In all, there were over 4000 sensor channels 
feeding information to the S-Learning Engine at each time 
step.  Each sensor channel carried a 1 (signifying 
“active”) or a 0 (signifying “inactive”), making them 
superficially similar to the afferent neurons that supply 
sensory information to the brain.  

Table I.  Sensory Data Channels
Sensory 
Modality

Number of 
Channels

Vision: plan view of table 2500
Position: joint 1 600
Position: joint 2 300
Position: joint 3 200
Position: joint 4 200
Position: joint 5 200
Position: joint 6 100
Position: joint 7 40
Flag: goal achieved 1

Total 4141
The fact that S-Learning does not have a set 

interpretation of its sensory information means that goals 
were required to be expressed in terms of raw sensor data.  
In the case of the PowerCube robot arm simulation, the 
goal state was considered achieved when the gripper was 
trying to close, but couldn’t (i.e., there was significant 
positive current flowing to the actuator and significant 
distance between the two fingers).  In terms of the robot’s 
simple set of sensors, this constituted a successful 
gripping of the target.  In the simulated environment, 
there was only one object within the robot’s workspace 
that could prevent the fingers from closing together—the 
target block.  If there had been a large number of 
objects—if the target had been located on top of a pile of 
other objects, for example—then additional sensors would 
have to be consulted to determine whether the task had 
been successfully achieved.  But in this case (by design), 
the sensors were adequately suited to the task.

With a sensory state space of 24141 (>101240) possible 
states, exhaustive exploration of the space was 
prohibitive.  A random walk through the state space was 
also unlikely to reach the target in reasonable time.  Two 
strategies were employed to handle the enormity of the 
state space.  First, a model-independent distance metric 
for the space was used.  For any two states, the fraction of 
active channels that they shared determines their 
similarity.  More specifically, the similarity, , between 
two states, A and B, was given by the number of shared 
active channels, NS, divided by the least number of active 
channels of the two states, min(NA, NB).

),min( BA
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N
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This similarity measure yielded a 0 if none of the 
channels were shared, and a 1 if all the channels were 
shared or if the active channels in one state were a subset 
of the active channels in another.  In the software 
implementation, a threshold of  = 0.93 was used as a 
cutoff to determine whether two states were sufficiently 
close to be considered a match for planning purposes.  
This value was tuned empirically and was likely specific 
to the particular system simulated. 

The second strategy used to cope with the large state 
space was to start with an easy task (i.e. success in the 
task could be achieved with a random walk in reasonable 
time) and to incrementally increase the difficulty as the 
robot became more adept.  In this way, the robot began 
the task just outside the border of a familiar region of 
state space.  Each time the robot discovered a path to the 
goal, this resulted in an incremental increase in the size of 
the familiar state space.  Initially, the robot’s position was 
set such that it was prepared to grasp the target and only 
needed to close its grippers.  Each time the robot 
successfully grasped the target, the task was reset.  Once 
the robot was able to successfully grasp the target more 
than five times in 100 moves, the initial distance from the 
target was increased.  This process continued until the 
maximum initial distance was achieved (shown in Fig. 3a, 
first panel).  

After a certain number of movements without 
reaching the goal (in this case, 10), the task was reset, and 
the arm was re-initialized to a starting position as
described above.  This prevented the robot from spending 
large amounts of time in the expanses of state space that 
were far from the goal.

II.C.2. Task Progress

The initial starting position was characterized by a 
quantity called “progress,” which ranged from 0 (at the 
closest starting position) to 100 (at the maximum initial 



distance).  The heuristic by which progress is modified is 
given by Eq. 2.

))2,(min(ˆ
tts nnnpp   (2)

In Eq. 2, p̂ is the new progress value, p is the most 

recent progress value, ns is the number of successful 
target reaches in the last 100 movements, nt is a constant 
threshold value, and  is a constant adaptation rate.  In 
this example, an nt of 5, and an  of 0.0025 produced 
well-behaved, largely monotonic increases in p, but these 
values are likely to be specific to this application and may 
require adjustment for others.  The effect of )2,min( ts nn

was to put a ceiling on the rate of change of p, preventing 
large jumps into uncharted regions of the state space.

The initial starting position described by p was used 
as an upper bound; it was the maximum distance that the 
robot could use for an initial position at each task reset.  
The actual starting position was randomly selected from 
the positions corresponding to a uniform distribution over 
the interval [0, p], often starting the robot within a 
familiar region of the state space.  This allowed 
knowledge of the familiar portion of the state space to be 
continually refined and renewed.

Two additional sources of stochastic variation 
ensured that the state space was appropriately explored in 
the neighborhood relevant to the task.  Positional 
variation in both the target and the robot joints were tied 
to p, that is, the magnitude of the variation was 0 when p 
= 0 and maximal when p = 100.  The maximum 
magnitudes of these positional variations were /4000
radians in the robot joints and 20 cm in the x- and y-
positions of the target.  The variations in joint position 
provided only a slight positional jitter.  The target position 
variations were large enough to change the nature of the 
task.

III. RESULTS

Initially, the simulated PowerCube arm moved 
randomly, in an exploratory fashion.  Its sequence library 
was empty, as it had no previous experience.  The S-
Learning algorithm had no basis upon which to form 
plans for achieving its goal of grasping the target. 
Typically, after resetting 5-20 times, the robot finally 
discovered a sequence of movements that allowed it to 
grasp the target.  It repeated this, subject to the stochastic 
variation inherent in its motor commands, until its task 
progress was increased, pushing the robot’s initial 
position out into an unfamiliar portion of the state space.  
Again, the robot made random movements until it got 
sufficiently close to a familiar position and was able to 
reach the target again.  This process repeated until the 
robot was able to reach the target 5 times in 100 moves at 

a task progress, p, of 100.  A well-behaving reaching 
movement from a fully-trained robot is contrasted with 
random movements in Fig. 3.

Early in learning task progress increased relatively 
rapidly.  Then, later in the process, it slowed 
considerably. (Fig. 4) This illustrates the increase in 
difficulty with increased progress, attributable to 
increased uncertainty in the robot’s initial position, the 
target position, and the magnitude of movement 
commands.  As task progress increased, the magnitude of 
variation in the robot’s initial position increased as well.  
This occasionally resulted in the robot starting in 
previously unvisited portions of the state space, requiring 
additional learning time to reach the goal.  

Increases in the magnitude of target position variation 
resulted in a dramatic increase in task complexity.  The 
robot was, in effect, being presented with a family of 
tasks rather than just one.  Without target position 
variation, vision information (the majority of the sensory 
input) would have been superfluous and could have been
be ignored.  However, when target position was varied, 
vision information needed to be incorporated and 
correctly applied to allow successful completion of the 
task.  

Finally, as longer sequences of movements were 
required to reach the target, the cumulative stochastic 
variation in those movements had a greater chance of 
causing significant deviation from the desired end 
position.  While this was helpful in exploring the local 
state space, it presented one more challenge to the 
efficiency of the task performance.

Often, the robot was unable to reach the target 5 
times within 100 movements.  In these cases p was 
decremented according to Eq. 2.  The alternating 
incrementing and decrementing of p resulted in a jitter 
that can be seen superimposed on the general upward 
progression of p.

The training time required to reach p = 100 for the 
first time was approximately 280,000 movements, 
although improvements in performance were still 
apparent through 500,000 movements.  

IV. DISCUSSION

The simulation presented here demonstrated the S-
Learning algorithm controlling a complex robotic arm to 
achieve a specific task.  The algorithm did not use any 
information about the environment, or the nature of the 
goal, or the size, range, or topology of the robot.  It 
contained no Cartesian representation of its workspace, no 
explicit representation of joint angles, and no calibration 
or interpretation of its rudimentary vision pixels.  It 
learned the relation between all these through self-
experimentation or “playing” in its environment.  



Fig. 4. Progress of the robot performance over time.  
“Progress,” as shown here, represents the average 
distance from the target at which the arm will begin the 
task.  Initially, the arm was constrained to begin the task 
very near the target, but as it achieved some success it is 
gradually started further away.  The maximal starting 
distance, corresponding to progress of 100, is the starting 
position shown in the first panel of Fig. 3a.

The training time shown of about one-half million 
moves is not out of line with training time for skilled 
human movements.  Each attempt at the target consisted 
of as many as ten moves, meaning that approximately 
100,000 separate attempts on the target were made.  This 
compares favorably with the number of repetitions it takes 
for humans to learn a task well.  For example, significant 
improvement in cigar-rolling performance is observed, 
even after the one millionth cigar.12

S-Learning is an extremely general learning approach.  
The same S-Learning and BECCA algorithm shown here 
could have been applied to stabilizing an inverted 
pendulum, learning to grasp with a many degree-of-
freedom robotic hand, or steering an unmanned vehicle.  
As long as the state contains appropriate sensor 
information and the system has adequate actuation, S-
Learning can be used to learn its behavior, store it in 

Fig. 3.  Video frames from the animations of a) novice or 
“newborn” reaching performance and b) experienced 
reaching performance. In novice reaching, there was no 
experience (i.e. no sequences stored in the S-Learning 
Engine) to direct the arm to the target or to aid in the 
interpretation of sensory inputs.  After a body of 
experience had been amassed, sequences linking the 
initial state to the goal state was used to plan a path 
through state space to the target. 



memory, and recall it for use in control.  Many other 
methods have been used to control seven degree-of-
freedom robots; it is not a new control problem.  The 
significance of S-Learning accomplishing the task is that
it did so without knowing a priori how to interpret any of 
its sensor data or how to reach its goal.

While S-Learning is in most respects a very general 
tool, there are several parameters that were specifically 
adjusted to produce desirable performance.  In addition to 
the constants identified in the description of the 
simulation, the selection and quantization of sensory data 
was found to be critical to the algorithm’s performance.  
Using irrelevant sensory information can artificially 
increase the dimensionality of the state space and dilute 
the algorithm’s ability to identify similar states.  
Quantizing sensory data too finely makes the state space 
unnecessarily large.  Quantizing sensor data too coarsely 
can prevent the algorithm from distinguishing between 
qualitatively different states.  While the underlying 
algorithm of S-Learning remains broadly applicable, 
addressing a number of diverse applications, its 
application must be engineered to a certain extent, fitting 
it to the specific application at hand.  This combination of 
general and optimized tools is found in human 
neurophysiology as well: brains are extremely general in 
their capabilities and show remarkable plasticity, while 
the structure, sensitivity, and distribution of sensory 
neurons appears to be highly optimized.  In future work it 
may be feasible for S-Learning to implement evolutionary 
algorithms to optimize the implementation-specific 
parameters, modeling not just its ontologic development, 
but also its phylogentic development on biological 
processes.

By basing its function on observed 
psychophsyiology, S-Learning is able to recreate some of 
the salient features and strengths of human motor 
behavior.  This paper has demonstrated a simulation of S-
learning in a reaching task.  However, the general nature 
of the algorithm suggests that it may also be capable of 
solving more complex motor control problems, including 
grasp, bimanual manipulation, visual tracking, balance, 
and bipedal locomotion.  The absence of explicit models 
makes S-Learning robust to changes in the environment 
and changes in robotic hardware, such as sensor and 
actuator failures, that are likely to occur in emergency 
situations. 
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