SAND2007- 7568C

ROBUST PERFORMANCE OF AUTONOMOUS ROBOTS IN UNSTRUCTURED ENVIRONMENTS

Brandon Rohrer

Sandia National Laboratories: MS 1010, PO Box 5800, Albuquerque, NM 87185-1010, brrohre@sandia.gov

The problem of navigating in and interacting with an
unstructured — environment presents challenges to
traditional learning and control approaches. However,
the nature of emergency response situations requires that
autonomous robots’ performance be robust to unmodeled
environments and unexpected challenges. One approach
to providing this capability is presented here: S-Learning.

S-Learning, an experience-based learning algorithm,
is implemented in the control of a seven degree-of-
freedom robotic arm. S-Learning stores sequences of
discretized (discrete in time), quantized (discrete in
magnitude), and categorical (uninterpreted) sensor data
and actuator commands. Handling the data in this way
removes explicit models about the environment, robot
kinematics, dynamics, and structure. Instead, a
bootstrapped model is generated on the fly by observing
sequences of sensory and command events. S-Learning is
based on a neuro-psychological model of learning and
movement control in humans and seeks to mimic the
strategies used by the brain to solve this problem.

I. INTRODUCTION

Emergency response environments are rarely well-
characterized, level, and free from obstruction. The
ability of an autonomous robot to handle novel
environments is essential to robust performance in an
emergency  situation. Additionally, the very
environmental hazards that require robotic intervention
(e.g. unstable rubble, sharp debris, explosive materials,
radiation) can damage the robot.  Ideally, robot
responders would be robust to failed sensors, frozen
actuators, misaligned cameras, and joint obstructions to
the greatest degree possible. This work describes a robot
control algorithm designed to achieve this goal.

The field of “learning to learn,” also termed
generalization or bias learning, takes machine
performance a step further than many learning
algorithms.! Generalization algorithms seek to improve
system performance not just on tasks for which the
systems have explicitly trained, but also on novel,
unrelated tasks. Humans are often able to learn a task
after only one or two exposures due to the ability to
generalize from previously learned tasks. Generalization
algorithms attempt to imbue automated systems with this

same ability. Common approaches include connectionist
networks,>” statistical (including Bayesian, memory-
based, and Markovian) methods,”° dimensionality
reduction, and modified reinforcement learning
techniques.™’ Within this set of generalization
algorithms, a subset is explicitly biologically-motivated.
These mimic the human brain, which serves as an
existence proof for solutions to daunting perception and
control problems. S-Learning falls into this category.

L.A. Relation to Temporal-Difference techniques

S-learning is a variant of temporal-difference (TD)
learning. It is superficially similar to Q-learning,'
another TD algorithm, but involves sequences of discrete
events (hence the S). TD algorithms are typically
effective at discovering optimal sequences of actions in
unknown environments. However, existing algorithms
only address the static TD problem, in which the states
that result in reward or punishment are fixed. This is
equivalent to a control system that has a fixed goal that
does not vary over time. And while multiple instances of
a static TD algorithm, such as Q-learning, can be
employed to account for multiple goal states, the
experience gained while training one does not transfer to
others in a straightforward way. Such an approach
typically requires a separate training period for each
instance of the algorithm. Even when this multiple-
instance approach is successful, it still does not aid the
system in reaching unfamiliar goal states.

The distinguishing characteristic of S-learning is that
it continually records recurring patterns to build a library
of past experiences. This library allows a goal-seeking
agent to piece the patterns together to form a complete
path to a goal. The strength of this approach is that the
goal can be any previously-visited state, not just one or a
few that were hard-coded from the start. Thus S-learning
can also handle changing goals, multiple goals, and even
conflicting goals and provides a potential solution to the
dynamic TD problem.

I.B. Relation to Markov Models

In an S-Learning sequence library, a set of sequences
of length two can be accurately represented in a Markov



model. The likelihood of transitioning from state A to
state B can be inferred from the sequence set and could
alternatively be represented in matrix form. Similarly,
longer sequences could be represented as higher-order
Markov models. It is accurate to describe an S-Learning
sequence library as a shorthand way of representing a
series of Markov models of order one to order N-1, where
N is the maximum sequence length. The advantage of a
sequence library is that it is concise. A first order Markov
model in a system with M possible states can be
represented by a M x M matrix, a second order Markov
model by a M * x M matrix, and an N-/ order Markov
model by a M """ x M matrix. For the system simulated in
this paper, in which N = 7 and M = 2"* this
representation  quickly = becomes  computationally
burdensome. In this sense, a sequence library is a sparse
matrix coding for a multi-order Markov model.

II. METHOD

Note: A description of the S-Learning algorithm has
been previously published, e.g. ', but is briefly presented
here for clarity.

Initially, the controller has no experience on which to
draw. In simulation, the S-Learning algorithm issues
random commands until the goal is achieved, at which
point it resets the simulation and attempts to complete the
task again. Each time the goal is achieved, the sequence
of states (sensor readings and commands issued) leading
up to the goal are stored in a sequence library. Each
sequence can be envisioned as a trail of discrete states that
result in a goal. During future attempts, each state
encountered during exploration is compared against
previous successful state-trails. If there is a sufficiently
close match, S-Learning issues the same sequence of
commands that had previously proved successful.

II.A. Architecture

S-Learning is at the core of a biomimetic Brain-
Emulating Cognition and Control Architecture (BECCA,
Fig. 1). BECCA consists of an Agent, a Planner, a World,
and an S-Learning Engine, each of which is briefly
described below.

II'A.1. Agent

The Agent sets goals for the system. The goals are
expressed in terms of the sensory state information
available from the World. Goals can be a specific state, a
set of states, or a portion of a state. Multiple, even
conflicting, goals can exist. Goals can change over time,
and the Agent can use new state information to decide
when and how to change them. The current set of goals is
available for use by the Planner.
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Fig. 1. Brain-Emulating Cognition and Control
Architecture (BECCA), featuring S-Learning: a block
diagram representation. The S-Learning algorithm is used
as an engine to bootstrap a model of the World. This
model is referenced by the Planner and uses new state
information to refine its World model in order to achieve
goals provided by the Agent.

11.A.2. Planner

The Planner determines which (if any) actions to take
at any given point in time. It takes in goals from the
Agent and current state information to inform its
decisions. The Planner queries the S-Learning Engine in
order to predict the results of possible courses of action.
Exploratory actions are also considered, particularly if the
current state is unfamiliar and the S-Learning Engine
cannot predict a path to a goal state. After a course of
action is determined, the Planner issues commands to the
World and reports those actions in a state vector.

11.A.3. World

The World is the external system that is being learned
and controlled. It is analogous to the Plant and
environmental disturbances in classical control system
formulations. The World can either be simulated or
instantiated in hardware, but in either case, the only
information it provides back to the rest of BECCA is
through its sensors. In simulations, BECCA does not
have direct access to the World's internal and state
variables.

11.A.4 S-Learning Engine

The S-Learning Engine uses the regularly-updated
stream of state information to bootstrap a model of the
World. There is no explicit model, assumed dynamics, or
implied structure.  Instead, the S-Learning Engine
observes repeated state sequences, particularly those that
result in a goal state. These state sequences are stored in
a library, which is referenced by the Planner during action
planning. The S-Learning Engine also keeps track of the
sequences that the Planner selects as action plans. If a
sequence leads to a goal, as predicted, it is reinforced by
weighting more heavily in the sequence library. If a
sequence fails to lead to a predicted goal, its weighting in
the library is reduced. After a number of failed



predictions, a sequence becomes sufficiently weak that it
is removed from the library.

I1.B. S-Learning Algorithm

S-Learning provides a single mechanism for handling
learning, memory, and prediction in BECCA. The
learning and memory behavior of S-Learning emerge
from the way new states are incorporated into the
bootstrapped world model. Initially, the sequence library
has no prior experiences and contains no state sequences.
When a goal state is achieved (presumably though the
exploratory efforts of the Planner) the sequence of events
leading up to the goal are stored in the library.

Control in S-Learning is straightforward.  All
sequences that contain the most recently observed state(s)
and terminate in a goal state are candidates for plans. The
Planner selects one plan from the candidate set (if there is
more than one) on the basis of some criterion, say
distance to goal or past success rate.

Other, more sophisticated control methods based on
the sequence library are possible as well. For instance,
daisy-chaining sequences together, creating trees of
possible plans, would allow the Planner to create novel
plans and generate a series of sub-goals.

If the Planner finds an appropriate sequence from the
library to serve as a basis for a plan of execution, then it
executes the sequence of commands contained in that
sequence. The planner has an expectation that a goal will
be achieved at the end of that sequence. If a goal is not
achieved when expected, that sequence of events is
appended to the library, allowing future prediction of the
same failure.

If a goal is achieved when expected, then the
successful sequence is compared against the sequence
library. If the observed sequence is significantly different
from any sequence in the library, the observed sequence
will be appended to the library.

I1.C. Simulation

S-Learning was implemented in a simulated seven
degree-of-freedom robot arm, based on physical
PowerCube hardware (Amtec GmbH, Germany).
MATLAB (Mathworks, Natick, MA) served as the
computation engine for the simulation. The robot
consisted of six serial rotary links, which terminated in a
parallel-finger gripper. (Fig. 2) The robot was mounted
on a table, within reach of a salt shaker-sized block.

The simulation consisted of two parts, a physical
contact model and a visual representation. In both cases,
each link of the robot was treated as a rigid body, and its
position relative to the other links was described
completely by the kinematic constraints and position of
each joint. Due to the high mechanical impedance and
non-backdrivability of the joints, links were considered to

Fig. 2. The PowerCube robot arm a) in a photograph and
b) in an image captured from the MATLAB simulation.

have no inertia; inertial effects were negligible in
determining movement dynamics. As a result, the set of
seven joint positions provided a complete state
description of the arm. The visual representation of the
model showed the configuration of the arm in the current
state in relation to the target block.

The physical contact model used of a number of
discrete spheres to represent the physical volume
occupied by each rigid link. When the contact spheres
from one link impinged on those of another, contact
forces were generated. These forces were computed over
the entire link and propagated, link by link, down the
kinematic chain to the base. If the forces or torques at
any given joint exceeded a threshold in the direction of
that joint’s movement, they prevented the joint from
moving against that load. The net effect of this was that
the arm was not capable of driving its gripper into the
table, or of “crushing” the target block.

Discrete commands were issued to each joint
consisting of a position (angle) step in one of 33
magnitudes. This yielded 33’ (>10'%) possible commands.
The commands were checked to ensure that they did not
attempt to drive any joint past its position limits. This
approach was motivated by the physical hardware;
discrete position commands are also the accepted
command format for the actual PowerCube arm. When a
command was issued, a small amount of stochastic



command noise was added, resulting in a non-
deterministic system. This jitter provided a means of
exploring a local neighborhood of the state space. In
addition, when a sequence of commands was being
executed, two subsequent commands would, on random
occasions, be executed simultaneously. This
“carelessness” served to drive learned sequences toward
their optimal length. If a learned sequence could be made
shorter, it eventually would be.

11.C.1. Handling sensory information

The vector of sensory information supplied to the
World Model contained joint position, a “goal achieved”
flag, and coarse vision from a fixed overhead camera.
(Table I) All of the sensor data used in simulation is
readily available on the physical robotic hardware
platform. In all, there were over 4000 sensor channels
feeding information to the S-Learning Engine at each time
step.  Each sensor channel carried a 1 (signifying
“active”) or a 0 (signifying “inactive”), making them
superficially similar to the afferent neurons that supply
sensory information to the brain.

Table I. Sensory Data Channels

Sensory Number of

Modality Channels
Vision: plan view of table 2500
Position: joint 1 600
Position: joint 2 300
Position: joint 3 200
Position: joint 4 200
Position: joint 5 200
Position: joint 6 100
Position: joint 7 40
Flag: goal achieved 1
Total | 4141

The fact that S-Learning does not have a set
interpretation of its sensory information means that goals
were required to be expressed in terms of raw sensor data.
In the case of the PowerCube robot arm simulation, the
goal state was considered achieved when the gripper was
trying to close, but couldn’t (i.e., there was significant
positive current flowing to the actuator and significant
distance between the two fingers). In terms of the robot’s
simple set of sensors, this constituted a successful
gripping of the target. In the simulated environment,
there was only one object within the robot’s workspace
that could prevent the fingers from closing together—the
target block. If there had been a large number of
objects—if the target had been located on top of a pile of
other objects, for example—then additional sensors would
have to be consulted to determine whether the task had
been successfully achieved. But in this case (by design),
the sensors were adequately suited to the task.

With a sensory state space of 2**! (>10"**’) possible
states, exhaustive exploration of the space was
prohibitive. A random walk through the state space was
also unlikely to reach the target in reasonable time. Two
strategies were employed to handle the enormity of the
state space. First, a model-independent distance metric
for the space was used. For any two states, the fraction of
active channels that they shared determines their
similarity. More specifically, the similarity, o, between
two states, A and B, was given by the number of shared
active channels, Ng, divided by the least number of active
channels of the two states, min(Ny, Ng).

Ny

o=t (1)
min(N ,,N;)

This similarity measure yielded a 0 if none of the
channels were shared, and a 1 if all the channels were
shared or if the active channels in one state were a subset
of the active channels in another. In the software
implementation, a threshold of ¢ = 0.93 was used as a
cutoff to determine whether two states were sufficiently
close to be considered a match for planning purposes.
This value was tuned empirically and was likely specific
to the particular system simulated.

The second strategy used to cope with the large state
space was to start with an easy task (i.e. success in the
task could be achieved with a random walk in reasonable
time) and to incrementally increase the difficulty as the
robot became more adept. In this way, the robot began
the task just outside the border of a familiar region of
state space. Each time the robot discovered a path to the
goal, this resulted in an incremental increase in the size of
the familiar state space. Initially, the robot’s position was
set such that it was prepared to grasp the target and only
needed to close its grippers. Each time the robot
successfully grasped the target, the task was reset. Once
the robot was able to successfully grasp the target more
than five times in 100 moves, the initial distance from the
target was increased. This process continued until the
maximum initial distance was achieved (shown in Fig. 3a,
first panel).

After a certain number of movements without
reaching the goal (in this case, 10), the task was reset, and
the arm was re-initialized to a starting position as
described above. This prevented the robot from spending
large amounts of time in the expanses of state space that
were far from the goal.

11.C.2. Task Progress
The initial starting position was characterized by a

quantity called “progress,” which ranged from 0 (at the
closest starting position) to 100 (at the maximum initial



distance). The heuristic by which progress is modified is
given by Eq. 2.

p=p+a(min(n;,2n)=-n,) ©)

In Eq. 2, pis the new progress value, p is the most

recent progress value, n, is the number of successful
target reaches in the last 100 movements, #, is a constant
threshold value, and « is a constant adaptation rate. In
this example, an n, of 5, and an o of 0.0025 produced
well-behaved, largely monotonic increases in p, but these
values are likely to be specific to this application and may
require adjustment for others. The effect of min(n,,2n,)

was to put a ceiling on the rate of change of p, preventing
large jumps into uncharted regions of the state space.

The initial starting position described by p was used
as an upper bound; it was the maximum distance that the
robot could use for an initial position at each task reset.
The actual starting position was randomly selected from
the positions corresponding to a uniform distribution over
the interval [0, p], often starting the robot within a
familiar region of the state space.  This allowed
knowledge of the familiar portion of the state space to be
continually refined and renewed.

Two additional sources of stochastic variation
ensured that the state space was appropriately explored in
the neighborhood relevant to the task.  Positional
variation in both the target and the robot joints were tied
to p, that is, the magnitude of the variation was 0 when p
= 0 and maximal when p = 100. The maximum
magnitudes of these positional variations were /4000
radians in the robot joints and 20 cm in the x- and y-
positions of the target. The variations in joint position
provided only a slight positional jitter. The target position
variations were large enough to change the nature of the
task.

III. RESULTS

Initially, the simulated PowerCube arm moved
randomly, in an exploratory fashion. Its sequence library
was empty, as it had no previous experience. The S-
Learning algorithm had no basis upon which to form
plans for achieving its goal of grasping the target.
Typically, after resetting 5-20 times, the robot finally
discovered a sequence of movements that allowed it to
grasp the target. It repeated this, subject to the stochastic
variation inherent in its motor commands, until its task
progress was increased, pushing the robot’s initial
position out into an unfamiliar portion of the state space.
Again, the robot made random movements until it got
sufficiently close to a familiar position and was able to
reach the target again. This process repeated until the
robot was able to reach the target 5 times in 100 moves at

a task progress, p, of 100. A well-behaving reaching
movement from a fully-trained robot is contrasted with
random movements in Fig. 3.

Early in learning task progress increased relatively
rapidly. Then, later in the process, it slowed
considerably. (Fig. 4) This illustrates the increase in
difficulty with increased progress, attributable to
increased uncertainty in the robot’s initial position, the
target position, and the magnitude of movement
commands. As task progress increased, the magnitude of
variation in the robot’s initial position increased as well.
This occasionally resulted in the robot starting in
previously unvisited portions of the state space, requiring
additional learning time to reach the goal.

Increases in the magnitude of target position variation
resulted in a dramatic increase in task complexity. The
robot was, in effect, being presented with a family of
tasks rather than just one. Without target position
variation, vision information (the majority of the sensory
input) would have been superfluous and could have been
be ignored. However, when target position was varied,
vision information needed to be incorporated and
correctly applied to allow successful completion of the
task.

Finally, as longer sequences of movements were
required to reach the target, the cumulative stochastic
variation in those movements had a greater chance of
causing significant deviation from the desired end
position. While this was helpful in exploring the local
state space, it presented one more challenge to the
efficiency of the task performance.

Often, the robot was unable to reach the target 5
times within 100 movements. In these cases p was
decremented according to Eq. 2. The alternating
incrementing and decrementing of p resulted in a jitter
that can be seen superimposed on the general upward
progression of p.

The training time required to reach p = 100 for the
first time was approximately 280,000 movements,
although improvements in performance were still
apparent through 500,000 movements.

IV. DISCUSSION

The simulation presented here demonstrated the S-
Learning algorithm controlling a complex robotic arm to
achieve a specific task. The algorithm did not use any
information about the environment, or the nature of the
goal, or the size, range, or topology of the robot. It
contained no Cartesian representation of its workspace, no
explicit representation of joint angles, and no calibration
or interpretation of its rudimentary vision pixels. It
learned the relation between all these through self-
experimentation or “playing” in its environment.
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Fig. 4. Progress of the robot performance over time.
“Progress,” as shown here, represents the average
distance from the target at which the arm will begin the
task. Initially, the arm was constrained to begin the task
very near the target, but as it achieved some success it is
gradually started further away. The maximal starting
distance, corresponding to progress of 100, is the starting
position shown in the first panel of Fig. 3a.

The training time shown of about one-half million

moves is not out of line with training time for skilled
human movements. Each attempt at the target consisted
of as many as ten moves, meaning that approximately
100,000 separate attempts on the target were made. This
compares favorably with the number of repetitions it takes
for humans to learn a task well. For example, significant
improvement in cigar-rolling performance is observed,
even after the one millionth cigar.'”
S-Learning is an extremely general learning approach.
The same S-Learning and BECCA algorithm shown here
could have been applied to stabilizing an inverted
pendulum, learning to grasp with a many degree-of-
freedom robotic hand, or steering an unmanned vehicle.
As long as the state contains appropriate sensor
information and the system has adequate actuation, S-
Learning can be used to learn its behavior, store it in

Fig. 3. Video frames from the animations of a) novice or
“newborn” reaching performance and b) experienced
reaching performance. In novice reaching, there was no
experience (i.e. no sequences stored in the S-Learning
Engine) to direct the arm to the target or to aid in the
interpretation of sensory inputs. After a body of
experience had been amassed, sequences linking the
initial state to the goal state was used to plan a path
through state space to the target.



memory, and recall it for use in control. Many other
methods have been used to control seven degree-of-
freedom robots; it is not a new control problem. The
significance of S-Learning accomplishing the task is that
it did so without knowing a priori how to interpret any of
its sensor data or how to reach its goal.

While S-Learning is in most respects a very general
tool, there are several parameters that were specifically
adjusted to produce desirable performance. In addition to
the constants identified in the description of the
simulation, the selection and quantization of sensory data
was found to be critical to the algorithm’s performance.
Using irrelevant sensory information can artificially
increase the dimensionality of the state space and dilute
the algorithm’s ability to identify similar states.
Quantizing sensory data too finely makes the state space
unnecessarily large. Quantizing sensor data too coarsely
can prevent the algorithm from distinguishing between
qualitatively different states. =~ While the underlying
algorithm of S-Learning remains broadly applicable,
addressing a number of diverse applications, its
application must be engineered to a certain extent, fitting
it to the specific application at hand. This combination of
general and optimized tools is found in human
neurophysiology as well: brains are extremely general in
their capabilities and show remarkable plasticity, while
the structure, sensitivity, and distribution of sensory
neurons appears to be highly optimized. In future work it
may be feasible for S-Learning to implement evolutionary
algorithms to optimize the implementation-specific
parameters, modeling not just its ontologic development,
but also its phylogentic development on biological
processes.

By  basing its function on  observed
psychophsyiology, S-Learning is able to recreate some of
the salient features and strengths of human motor
behavior. This paper has demonstrated a simulation of S-
learning in a reaching task. However, the general nature
of the algorithm suggests that it may also be capable of
solving more complex motor control problems, including
grasp, bimanual manipulation, visual tracking, balance,
and bipedal locomotion. The absence of explicit models
makes S-Learning robust to changes in the environment
and changes in robotic hardware, such as sensor and
actuator failures, that are likely to occur in emergency
situations.
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