

Block-Partitioning For Multi-Wavelet Polynomial Chaos Expansions

SAND2007-4883C

- **Intern: Steven Widmer**
 - **University of North Texas**
- **Mentor: Habib Najm**
- **Reacting Flow Research Department - 8351**

Polynomial Chaos Expansions

- **What is a polynomial chaos expansion?**

Suppose we have the problem $u=f(t, \lambda, u)$,
where λ is an uncertain parameter, $\lambda \sim N(\mu, \sigma^2)$.

We can write the polynomial chaos expansion as

$$\lambda = \sum_{k=1}^{\infty} u_k \Psi_k(\xi), \quad \Psi_k \text{ are Hermite polynomials}$$

so here $\lambda = \mu + \sigma \xi$, where $\xi \sim N(0, 1)$.

Multi-Wavelets & Partitioning

- **Problems with Gaussians**
 - **Infinite support**
- **Multi-Wavelets**
 - **Compact support**
- **Domain Space Partitioning**
 - **Refined compact support**

Where do I come in?

- **Block-Partitioning Methods Exist**
 - **Used for specific problems**
- **General Software Implementation**
 - **Generic functionality**
 - **Add to existing uncertainty quantification library**

Getting A Handle On Things

- **Learn about polynomial chaos expansions**
 - Reading lots of technical papers
- **Learn how the method will be used**
 - Analyze examples of block-partitioning
 - Compare with algorithm in technical papers

Writing The Code

- **Sample Problem**
- **General Function**
 - **Expand the sample case**

Testing, Testing, Testing,...

- **Compare mean and standard deviation.**
- **Compare probability density functions.**

Benefits To Sandians

- **Powerful software tool**
 - **Black-box function**
- **Speed up model generation**

With Thanks To

- **Habib Najm**
- **My Mentor**
- **Bert Debusschere**
- **Philippe Pebay**
- **Department 8351**

fin