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» overview of suspension viscosity
« data on NP/polymer rheology
 review of polymer melt rheology

« some theoretical speculations
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How do NPs affect viscosity?

behavior of dilute suspensions

Einstein (19006):

n= ns(pr%(pj good for ¢ < 0.03

JIC
D

intrinisic viscosity: ul 1m¢ao£ e 7

N

two-body interactions n=n,1+2.5¢+6.2¢")  good for ¢ <0.10
(Batchelor, 1977)
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M Conventional Filled Polymers

> micron-sized particles
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Kitano et al., Rheol. Acta 17, 149 207 (1978)
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Nanocomposite Simulations
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POSS in PMMA
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Kopesky et al., Macromolecules 37, 8992 (2004)
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,." Miscible Polymer/Nanoparticle Blends
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Mackay et al., Science 311, 1740 (2006) i Noio
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A Model Athermal System: PS NPs in PS

hard-sphere like nanoparticles mix in melt PS

Linear chain precursor ﬂ @

s ® e

NPs stay dispersed!
(for Ryp <R))

W Mackay et al., Nature Mat., 2003 el

E. Harth, J. Am. Chem. Soc., 2002 Laboratories
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Data: PS Nanoparticles in PS
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how can intrinsic viscosity change sign?
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Polymer Viscosity

] 1 LI III I 1 I 51 II.I| ] 1
T = o
A El { Er:tangl_a:l regime Ci

10T

r'Ill,gi--.-E:lI'Z“
&
e . Entangiameant ﬂ N
oy 4 change
:.:I:I rIO — - - . - —
M
e .
‘::. .1D"-’ - - - . - — - — e
BT
o z
E 10
=
10
m':' - ® Mackay & Henson -
Free volume W This work |
1 @ change
1D DI 1 IIIIII| i 1 IFIIIJI [] -‘
2 488 2 4 58 , 2 4
10 10°

Molecular mass (kDa)

distinct change in scaling at crossover molecular weight
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Short Chains: Rouse Model
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jf}‘ Entangled Chains: Reptation
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e '
M Digression: Star Polymers

arms constrained in tubes a I
move by arm retraction

2
15Ns (fixed network)

moves in potential: ~ {J/(s) =
e Pearson-Helfand

relaxation time: T (S) =T OeU (s)

T (S) ~ eXp ()/st) —  wide separation in time scales
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Dynamic Dilution
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Ball and McLeish
Milner and McLeish

aq(o)

at t(s): segments with s'<s completely relaxed
segments with s'>s not relaxed

entanglement network dilutes 3 4/3 3 8/3
tube diameter dilates N=N/(-5)", a,=a,/(1-5)

dd gives new effective potential ¢ (s)= f(N/N,)z,exp(U,,(N/N,,s))
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Linear Polymers

linear PI

N/N, = 24.6

log G, log G" (Pa)

Frischknecht et al.,
Macromolecules (2002)

0 2
log w (1/s)

contour-length fluctuations: Milner and McLeish
treat linear chain as 2-armed star

*ends retract until td, then chain reptates
-fractional distance retracted by 1 is s4:

7, (Sd): T,
/
from star theory

sreptation time shorter due to CLF:

S CC N

DR /N

« with Doi-Edwards spectrum + Rouse
mode get good agreement with
experiment

nec (N/Ne)M
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Proposed Mechanism for NP Effects
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large particles small particles
low MW matrix high MW matrix
Classical Suspension Nanoparticles dilute entanglements

in linear polymer

Idea: Crossover in [n] occurs when the viscosity
increase due to particles is offset by a decrease in
the matrix viscosity due to dilution
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4;’ Dilution of Entangled Chains

assume nanoparticles are like theta solvent
take up space — dilute entanglement network

—2/3 4/3

tube diameter increases: a(p)=a,[1-¢]"", N.(¢)=N,[l-¢]
reptation time lower . _ N _ N (1-9)"
(fewer entanglements) * n’kTd’  n*kTa,
plateau modulus Gy (9)=Gy(¢p=0)1-¢]"
nsz(\)/Td
viscosity:

no(cb)— G?v [ﬁj (1-¢)°  N>>N,

Colby & Rubinstein Macromolecules 23, 2753 (1990) =
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Simplest Theory

5
combine dilution + Einstein result n= Up(¢ 1+5¢j

Rouse
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What do the NPs contribute?

\

can we treat the mixture as a miscible blend?

NZ 0N + Mo(9)

low MW - Rouse model 770(¢)_ G]%r ( j (1-¢) N<<N,

2
High MW - Reptation no(gb)— Ggr ( ] (1- ¢)11/3 N>>N_

Tlpart is the viscosity of the nanoparticles at a liquid-like packing fraction
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e
:;’. Viscosity of Nanoparticle Mixture
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= '
jf' Polymeric Nanoparticles

j’" D Single chain cluster
Mpart = 0 G(0dt= GyroN, D = fractal dimension

Martin, Adolf, Wilcoxon, Phys. Rev. A 39, 1325 (1989)
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Comparison with Experiments of Tuteja et. al.
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Crossover Regime

Theory predicts monotonically decreasing viscosity

Experiments are non-monotonic
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Viscoelasticity
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to move, nanoparticle doesn’t need
to move whole chain

feel viscosity of n = R2/b?> monomers

R2

nRouse = T’ln = nl ?
R3
dl” ag - RnRouse = ?

drag depends on particle size for small particles

Brochard Wyart and de Gennes, Eur. Phys. J. E, 1, 93 (2000)
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Nanoparticle Diffusion: Data

D/ Dgp

CdSe quantum dots in PS

| | 1 ] |

10 & 10°
= Rouse viscosily (780)
- @ @ 10°
10° )
= ® 10"
- m
B L)
10' E = = 10°
E'r+-i-17-lh1r-rrl-—1--ri-:|lrﬁ-ri-—-i--r-i-i-f 2 | 1-?&":
F Blend viscosity (3.8) 4 10" g psas3kopure '
10° £ _ , - B PS5 393k0 + 8% CdSe QDols
F  Tueviscosity(1.0) ag .o} , |,  , b
130 140 150 160 1w 1w 10 1w
Temperature (°C) Frequency (rad/s)

D, =k, T/6mnR

NPs don'’t feel macroscopic viscosity

Tuteja et al., Nano Lett 7,1276 (2007) =
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Dilute Limit Hydrodynamics
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length-scale
dependent
polymer viscosity

1
77(9)” U 1+(ng)2

\
2=
0
N

solve hydrodynamics of NP in melt

. .. i . _n-n, _ 5+10A4 2 = sli
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A better mixing rule?

| 0

mixing rule for friction coefficient at Rouse level?

R

‘SV: drag on NPs  RMgeue = =

."}:f‘" drag per Rouse bead ¢ %
) t }

S0)* C-0)+6

Rouse scaling [n]= g_ 0
depend on NP size
- - R 14
reptation scaling  [n7]= T

slows down Rouse relaxation
still have dilution effect in engtangled chains

how incorporate in detailed molecular model?
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Complex Viscosity (Pa-s)

but viscosity goes down for 110kDa linear!

\

A further puzzle: star polymers

magnetite NPs, R = 5-10 nm
in 3-arm PS star, N, = 110 kDa

® 330kDa3 Arm Star Polystyrene
m Star + 2wt% Fe 0,
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What’s happening?

how can viscosity go down for linears, up for stars??

recall: for stars net, cexp(VN/N,)

if NPs dilute entanglement network
(or release constraints)

—4/3

N.(¢)=N.(1-9)

then NPs should also speed up star dynamics

star arms fairly short:
110 kDa: N,/N_, = 6
dilution mechanism different somehow?

BUT:
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Summary

« small NPs dramatically alter polymer viscosity

* [n] < 0 for N>>Ne
» seems particle-size dependent

 can get change in sign of [n] from simple theories

» dilution of entanglement network
* NPs only feel local viscosity

« something different in stars?

» quantitative theory still elusive

CINT

Sandia LDRD

Thanks

John Curro (UNM)

Michael Mackay
(MSU)

Sandia
National
Laboratories



