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ABSTRACT
Ferroelectric ceramics can be tailored at the microscale

to have an ordered arrangement of crystal axes. Such grain-
oriented ceramics can exhibit material properties far superior
to conventional ceramics with random microstructure. A mi-
crostructurally based numerical model has been developed that
describes the 3D non-linear behavior of ferroelectric ceramics.
The model resolves the polycrystalline structure directlyin the
topology of the problem domain. The developed model is used
to predict the effect of microstructural modifications on mate-
rial behavior. In particular, we examine the internal residual
stress after poling for idealized configurations of random and
grain-oriented microstructures. The results indicate that a grain-
ordered microstructure produces a significant increase in rema-
nent polarization without detriment to internal residual stress.

INTRODUCTION
Microstructurally engineered ferroelectric ceramics aretai-

lored at the microscale to have an ordered arrangement of crystal
axes. Such grain-oriented ceramics can exhibit material prop-
erties far superior to conventional ceramics with random mi-
crostructure. For example, lead-free ferroelectrics havebeen
considered nonviable because of inferior single crystal proper-
ties. Carefully selected lead-free compositions can be processed
with textured microstructure to compete directly with their lead-
based counterparts [1, 2]. In addition to creating new ferroelec-
tric materials, and optimizing existing ferroelectrics, the abil-
ity to manipulate material microstructure enables the creation

of ceramic components specifically tailored for an application
or device. However, when developing new ferroelectric materi-
als (e.g., lead-free), or for optimization of existing materials, the
need arises to evaluate the effect of microstructural modifications
on bulk material response.

The present paper examines via numerical modeling the ef-
fect of microstructural tailoring on the internal stress that remains
after poling. In what follows, the numerical model is described
in brief, and the results of simulations on representative configu-
rations are presented.

NUMERICAL MODEL

A microstructurally based numerical model has been devel-
oped that describes the 3D non-linear behavior of ferroelectric
ceramics [3]. The model resolves the polycrystalline structure
directly in the topology of the problem domain and uses the ex-
tended finite element method (X-FEM) to solve the governing
equations of electromechanics. Each grain in the polycrystal is
modeled as a single crystal with its own unique and randomly de-
termined material basis. The material response is computedfrom
anisotropic single crystal constants and the volume fractions of
the polarization variants. Evolution of the variant volumefrac-
tions is governed by the minimization of internally stored energy
and accounts for ferroelectric and ferroelastic domain switching
in response to the applied loads.
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The Extended Finite Element Method for Electrome-
chanics

The extended finite element method (X-FEM) is an exten-
sion of the classical FEM to treat functions with arbitrary dis-
continuities and discontinuous derivatives [4]. Interfaces are cap-
tured through a nodal enrichment function that, in this work, is
based on a signed distance function.

In classical finite elements, geometric features are resolved
in a conformal discretization so that the mesh must conform to
external surfaces and internal interfaces. In many cases, such
as with composite structures and multiple phase materials,it
is a formidable task to create a conformal discretization. The
X-FEM greatly simplifies the treatment of complex geometries
by accommodating interfaces directly in the FEM interpolation
thereby eliminating the need for conformal meshing.

The weak form of the governing equations of electrome-
chanics, i.e., the conditions of mechanical and electricalequi-
librium, is reduced to a discrete system of equations by the ap-
proximations

u(x) = ∑
I

uI NI (x)+∑
J

aJNJ (x)η(x) (1)

φ(x) = ∑
I

φI NI (x)+∑
J

ρJNJ (x)η(x) (2)

whereNI (x) are the finite element shape functions, anduI and
φI are the nodal displacements and potential [4]. The first terms
on the right hand side of equations 1 and 2 are the familiar finite
element interpolation used in many conventional finite element
codes. The second terms are due to the extended finite element
method and accounts for theC0 continuity of an element that is
bisected by an interface. In this term,aJ andρJ are theenrich-
mentdegrees of freedom and exist only at those nodes whose
support is intersected by an interface. The scalar valued function,
η(x), is referred to as theenrichment function. The enrichment
function selected for this work was proposed by Moes [5] and is
defined to be

η(x) = ∑
I
|ψI |NI (x)−
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whereψI are the nodal values of the level set representation of
the boundary. The key feature of this function is that the first
derivative is discontinuous. It is this attribute that makes the en-
riched interpolation of equations 1 and 2 well suited for elements
with discontinuous derivatives.

In the present work, when voids are present in the problem
domain, the X-FEM is used to capture the discontinuity of the
free surface. Grain boundaries, however, are captured approxi-
mately by the classic finite element polynomial basis. Treating

the arbitrarily intersecting grain boundaries using the X-FEM is
an ongoing effort.

Constitutive Model
For the constitutive response, a micro-electromechanical

material model is used that is similar to the one proposed by Hu-
ber [6] and used by Kamlah [7]. A more extensive description of
the model used for this work can be found in [3].

A ferroelectric ceramic subjected to sufficiently large loads
exhibits a nonlinear response due to the reorientation of electric
dipoles and/or phase transitions. The nonlinearity of the material
response is accommodated by decomposing the strain and elec-
tric displacement into their elastic (linear) and inelastic (nonlin-
ear) parts;

σi = cD
i j εL

j −hi j DL
j

Ei = −hi j εL
j + βε

i j D
L
j

(4)

where

εL
i = εi − εR

i
DL

i = Di −DR
i
, (5)

and the inelastic quantities,εR
i andDR

i , are a function of the load
history. If there aren possible crystal variants, each variant can
transition to every other variant, giving a possiblen2 transition
systems. Using the approach of Huber [6], the rate of change in
volume fractions, ˙cI , is related to the transition rate,η̇, of active
systems by a connectivity matrix,

ċI = AIαη̇α (6)

where the summation onα is implied and ranges from 1 to the
number of transition systems,n2. The numbering of the transi-
tion systems proceeds sequentially through the possible transi-
tions from variant N to variant M forM = 1. . .n,N = 1. . .n. The
connectivity matrix,A, is n× n2, whereinAIα = 1 if activation
of systemα increasescI , AIα = −1 if activation of systemα de-
creasescI , andAIα = 0 if activation of systemα has no effect
oncI . The change in inelastic strain and electric displacement is
computed according tȯεR

i j = εRα
i j η̇α andḊR

i = DRα
i η̇α whereεRα

i j

andDRα
i are the change in inelastic strain and electric displace-

ment associated with transition systemα.
The increment ofηα in a given load step is computed by

∆ηα = −τ(Gα −Gα
c ) . (7)
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The scaling parameter is given asτ = (∑n Hnn)−1, wheren in-
cludes only active systems and

G =
1
2
U K

′
U

T +U
′
K U

T (8)

H = U
′
K U

′T +2U
′
K

′
U

T (9)

where

U =
[

εL
i j DL

i

]

(10)

U
′
=

[

−εRα
i j −DRα

i

]

(11)

K =

[

Ci jkl −hi jk

−hi jk βi j

]

(12)

K
′
=

[

CI
i jkl A

Iα −hI
i jkAIα

−hI
ikl A

Iα βI
ikAIα

]

. (13)

The critical energy level required for activation of each transition
system is given by

Gα
c = −σc

i j ε
Rα
i j −Ec

i DRα
i . (14)

whereσc
i j andEc

i are the coercive stress and coercive fields, re-
spectively. Onceηα are computed, the updated values of the bin
fractions,cI , inelastic strain,εR

i j , and inelastic polarization,DR
i ,

are computed.

RESULTS
The above model is applied to a hypothetical rhombohedral

ferroelectric polycrystal (see table 1). The polycrystalline struc-
ture is idealized using a Voronoi decomposition of the problem
domain into 16 grains. Samples are either fully dense or porous,
and have aligned or random material bases, resulting in fourcon-
figurations. The porous sample has a single pore at the origin
resulting in a porosity of approximately two percent. Samples
with aligned material bases have the[111] direction of each grain
aligned with the global z axis, but rotation about this axis is ran-
domly selected.

Table 1. RHOMBOHEDRAL MATERIAL CONSTANTS.

Elastic stiffness,c11 1.491×1011 Pa

c12 7.109×1010 Pa

c13 5.347×1010 Pa

c33 1.107×1011 Pa

c44 2.642×1010 Pa

Relative permittivity,ε11 145.0

ε33 335.0

Piezoelectric constant,h33 3.91×108N/C

h31 1.32×108N/C

h24 1.41×108N/C

Lattice parameter, a 4.148Å

Lattice parameter,α 1.566

Spontaneous polarization 0.37C/m2

There are eight crystal variants in a rhombohedral ferroelec-
tric, one for each body diagonal of the unit cell, resulting in 64
possible transition systems. The transition strains and transition
polarizations are computed as the respective differences in spon-
taneous strain and spontaneous polarization between variants.

Each configuration is subjected to a polarizing electric field
of 3.0MV/m along the x axis, perpendicular to the alignment
axis. To accommodate domain switching events without limiting
the load step throughout the calculation, zeroth order parameter
continuation is used so that the maximum change in electric dis-
placement magnitude remains within specified limits.

The electrical response of the aligned and random configu-
rations is shown in figures 1 and 2. As could be expected, in both
the porous and solid configurations the aligned samples achieve
a significantly higher remanent polarization (11 percent and 15
percent, respectively) due to the alignment of the[111] material
axis.

The electrical response in figures 1 and 2 is a measure of
bulk material response. Perhaps the most useful aspect of spa-
tially and temporally resolved numerical modeling is the ability
to examine local fields. In an effort to quantify the local internal
residual stresses, figures 3 and 4 show plots of the volume frac-
tion of material at a given von Mises stress after the polarizing
field has been removed. In the figure, the points are the actual
numerical value and the solid lines are a gaussian fit to assist the
eye. The peak residual stresses in the samples do not appear to
be greatly affected by the microstructural modification, however,
the median von Mises stress decreases appreciably in the aligned
samples.
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Figure 1. CALCULATED ELECTRICAL RESPONSE OF ALIGNED AND

RANDOM SOLID MICROSTRUCTURES TO POLARIZING FIELD.
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Figure 2. CALCULATED ELECTRICAL RESPONSE OF ALIGNED AND

RANDOM POROUS MICROSTRUCTURES TO POLARIZING FIELD.

Figures 5 and 6 represent the domain configuration for both
the aligned and random configurations after poling. The pol-
ing direction is atθ = 0, i.e., the positive x axis in the figure.
The polar coordinate is the angle from the poling direction,and
the radial coordinate indicates thedomain fraction, the ratio of
current to initial (unpoled) values of the material volume whose
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Figure 3. CALCULATED RESIDUAL STRESS DISTRIBUTION IN

ALIGNED AND RANDOM SOLID MICROSTRUCTURES AFTER BEING

SUBJECTED TO POLARIZING FIELD.

spontaneous polarization lies within the given range of angles.
For an unpoled sample, the polar plot has a value of one at all
angles. For a typical poled sample, the polarization dipoles will
be distributed about the poling direction with the majorityfalling
within 45◦. In the random configurations a significant amount of
material remains laterally oriented to the poling direction. How-
ever, the aligned samples achieves a superior alignment with the
poling axis and yields a significantly higher remanent polariza-
tion.

CONCLUSIONS
A spatially resolved numerical model is used to examine the

effect of a tailored microstructure on remanent polarization and
internal residual stress after poling of a hypothetical rhombohe-
dral ferroelectric polycrystal. By aligning the[111] material di-
rection with the global z axis the remanent polarization that can
be achieved on an axis perpendicular to the alignment axis in-
creases significantly. The numerical results indicate thatthis im-
provement in remanent polarization is without penalty in terms
of the internal residual stresses introduced during poling.
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Figure 4. CALCULATED RESIDUAL STRESS DISTRIBUTION IN

ALIGNED AND RANDOM POROUS MICROSTRUCTURES AFTER BE-

ING SUBJECTED TO POLARIZING FIELD.
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Figure 5. POLAR PLOTS OF THE RELATIVE DOMAIN FRACTIONS

AFTER POLING THE SOLID CONFIGURATIONS.
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Figure 6. POLAR PLOTS OF THE RELATIVE DOMAIN FRACTIONS

AFTER POLING THE POROUS CONFIGURATIONS.
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