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Goals of Presentation

* Present two approaches to parameter estimation

— Classical Statistics

* Methods for generating joint confidence regions in
nonlinear regression problems

— Bayesian Calibration Methods

- Parameters are random variables, given a prior
distribution, want to estimate a posterior distribution
that incorporates the data

« Compare and contrast the approaches, identify
assumptions/difficulties with each

« Apply the approaches to a real application

— Calore thermal simulation of a component
encapsulated by foam
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Why is parameter estimation difficult?

 Parameter estimation / model calibration:

— Use observations of response to make inference
about model inputs

 Observations contain noise
* Model is imperfect

 Many combinations of parameter values yield
comparable fits

* Model is expensive
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Nonlinear Regression Methods

- Extension of linear regression: d = f(0,x)+¢
* To determine the optimal parameters, one minimizes the

error sum of squares S: n L L )
S@)=) [f(8,x,)-d,]' =) r(8)
i=1 i=1

* Specialized techniques have been developed to find the
least squares estimator @ of the true minimum 0

* If one assumes that the residuals are close to zero near
the solution, the Hessian matrix of S can be approximated
using only first derivatives of the residuals r.

» Gauss-Newton methods are particularly effective on this
type of problem

« We have three such methods in DAKOTA: Gauss-Newton
based in OPT++, NLSSOL (SQP), NL2SOL (trust-region
method)
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Joint Confidence Regions

« Linear Approximation Method

— In linear regression, SSE is quadratic, and contours of constant SSE are
ellipsoids.

— Can approximate the nonlinear function with Taylor series expansion
about the parameter estimate ()

0:(0—0)H(0)0—0)<SO)(—L)F°

Pan_P}

ns wh
— For very nonlinear models or in situations where the Hessian
approximation is poor, this can be inaccurate

* F-test Method
— Based on the assumption that the error terms are jointly normally

distributed S(0)-S5(0 o
0:SO-SO L p .
S(0) n—p

* Log-likelihood method
— Based on assumptions about the likelihood estimator of the parameters

{0: n[log S(0) —log S(0)]< x> (a)}
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Quick example
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Bayesian Calibration

* Uncertain input parameters are given prior
distribution functions

* The priors are refined based on the data resulting
in posterior distributions which represent the new
state of knowledge

m(0)f(D|06)

- Bayes theorem: f(0|D)= I 7(0)f(D]0)0(0)

0
— Posterior proportional to prior * likelihood
SO [D)ocr(0)L(O)

— Assumption that there is a probabilistic
relationship between experimental data and model
output that can be defined by a likelihood function
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Bayesian Calibration

 Experimental data = Model output + error

d =G(0,x,)+e¢,

* Error term incorporates measurement errors and modeling
errors (can get more complex with a bias term)

* If we assume error terms are independent, zero mean
Gaussian random variables with variance c2, the likelihood

Is: . 2
Lo -] exp{_ (d,~G(0.x,)) }

2
i1 o2 20

 How do we obtain the posterior?
— It is usually too difficult to calculate analytically

— We use a technique called Monte Carlo Markov Chain
(MCMC)
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Markov Chain Monte Carlo

* In MCMC, the idea is to generate a sampling density that is
approximately equal to the posterior. We want the sampling
density to be the stationary distribution of a Markov chain.

* Metropolis-Hastings and Gibbs sampling are the most
commonly used algorithms

* Both have the idea of a “proposal density” which is used for
generating X.,, in the sequence, conditional on X,

* Implementation issues: How long do you run the chain, how
do you know when it is converged, how long is the burn-in
period, etc.?

« ACCEPTANCE RATE is CRITICAL. Need to tune the proposal
density to get an “optimal” acceptance rate, 45-50% for 1-D
problems, 23-26% for high dimensional problems

« COMPUTATIONALLY VERY EXPENSIVE
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Markov Chain Monte Carlo

Paramefer 2

148000 : : : : 7 .

144000

142000
%%%V fb

140000 g

136000

134000

1m | | 1 1l 1l 1l

00043 00044 0.0045 00046 00047 O0OD4B QOOMD
Parameter 1

@D

oS o2

Sandia
National
Laboratories



11

Gaussian Processes

» Since MCMC requires tens of thousands of function
evaluations, it is necessary to have a fast-running surrogate
model of the simulation

« Gaussian process surrogates are often used
* GPs are based on spatial statistics for interpolating data

* In GPs, the response values Y(x,), ..Y(x,) are modeled as a
group of multivariate normal random variables

« A GP is fully specified by its mean function p(x) = E[Y(x)] and
its covariance function C(x, x’)

» Often a constant mean is used with covariance:

d
C(x,x'")=v, exp{—z pj (x, = X', )}
« This covariance function involves the product of d squared-
exponential covariance functions with different lengthscales
on each dimension. The form of this covariance function

captures the idea that nearby inputs have highly correlated
outputs.
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Gaussian Processes

* Pros:

Non-parametric

Handle multiple dimensions

Potentially accurate (potentially)

Can represent the uncertainty in prediction at new points

ElYne1 | Y15 Y25 - Yal = K'CTy
Var[Yn+1 I Y1 Y2, .- yn] = C(Xn+1’Xn+1)'ch-1k

« Cons:

Estimation of the parameters defining the GP (hyperparameters) such as the
lengthscales, the process variance, and mean parameters, is difficult

Can use maximum likelihood estimation or Bayesian approach

We use MLE

The MLE function may be multi-modal or have a flat landscape

GP Methods work well when the covariance matrix is not ill-conditioned but often it is

Jitter term is sometimes added to the diagonal terms of the covariance matrix to
make it better conditioned

John McFarland developed a point selection algorithm which selects a subset of
“optimal” points which minimize a cross-validation prediction error

Sandia
m National
Laboratories




13

Bayesian Calibration: Overall approach

» Take initial set of samples from simulation
— Use LHS or space-filling design
* Develop Gaussian process approximation of the simulation
* Put priors on the input parameters
* Perform Bayesian analysis using MCMC
* Generate and analyze posterior distributions

* NOTE: GP surrogate adds a layer of uncertainty. However,
this is explicitly modeled in the revised likelihood:

/2l 1 _
L(0)=27""" Z‘ . eXp|:_E(di —Uep) 27 (d, — .UGP)}

S=0’1+2,,

* Total uncertainty = (observation + model uncertainty) +
code uncertainty
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Calore Application: “Foam in a Can”

 Five calibration parameters:
— Applied heat flux (g2, 93, g4, g5)
— Foam Final Pore Diameter FPD
* » Time-dependent temperature response
— 20 thermocouple locations
— Reduced to 9 “locations”

Applied
heating

— Data taken approximately every 1.8 seconds

— Even with data reduction, still have over 10,000

mock data points

component
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* 50 LHS samples of CALORE
code

9 locations

with 2 GPs representing
different behavior after 500
seconds

 Reduced the code to 12.5 sec
increments

18 GPs

500 1000 1500 2000 estimate GP parameters for
Time (seconds) each

* Then, use the 18 GPs in the

likelihood function > MCMC to

construct posterior

(L

« Each sample predicts at each of

* Response at each location is fit

* Used MLE and point selection to
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Bayesian calibration results

« Samples from f (0| d)

* Posterior statistics (best estimate=mean)

» Marginal histograms

« Joint confidence regions (kernel density estimates)
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Bayesian calibration results
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Calibrated Predictions vs. Observations
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Joint Confidence Region Estimation

* Show results (NOTE: These are very preliminary, will
be changed. The nature of the picture will be the same,

but the points may be located in different places
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Summary

« Computational issues with each

— Bayesian calibration

* GP problems: MLE estimation of the parameters, ill-
conditioning of the covariance matrix, stationary variance
assumption

« MCMC: testing for convergence done in an ad-hoc fashion

— Nonlinear regression methods
 Model assumptions

» Linear approximations often require Jacobian or Hessian
estimates, not always accurate

« SSE contour estimation expensive

— Both methods require surrogates, use optimization
within the overall strategy (e.g., MLE estimation)

— Both methods account for uncertainty in the parameters
based on some idea of likelihood of the parameters in
certain regions of the space given the data
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