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Goals of Presentation

• Present two approaches to parameter estimation
– Classical Statistics

• Methods for generating joint confidence regions in 
nonlinear regression problems

– Bayesian Calibration Methods
• Parameters are random variables, given a prior 

distribution, want to estimate a posterior distribution 
that incorporates the data

• Compare and contrast the approaches, identify 
assumptions/difficulties with each

• Apply the approaches to a real application
– Calore thermal simulation of a component 

encapsulated by foam
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Why is parameter estimation difficult?

• Parameter estimation / model calibration: 

– Use observations of response to make inference 
about model inputs 

• Observations contain noise

• Model is imperfect

• Many combinations of parameter values yield 
comparable fits

• Model is expensive
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Nonlinear Regression Methods

• Extension of linear regression:

• To determine the optimal parameters, one minimizes the 
error sum of squares S: 

• Specialized techniques have been developed to find the 
least squares estimator    of the true minimum 

• If one assumes that the residuals are close to zero near 
the solution, the Hessian matrix of S can be approximated 
using only first derivatives of the residuals r. 

• Gauss-Newton methods are particularly effective on this 
type of problem

• We have three such methods in DAKOTA:  Gauss-Newton 
based in OPT++, NLSSOL (SQP), NL2SOL (trust-region 
method)
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Joint Confidence Regions

• Linear Approximation Method

– In linear regression, SSE is quadratic, and contours of constant SSE are 
ellipsoids.

– Can approximate the nonlinear function with Taylor series expansion 
about the parameter estimate 

– For very nonlinear models or in situations where the Hessian 
approximation is poor, this can be inaccurate

• F-test Method

– Based on the assumption that the error terms are jointly normally 
distributed

• Log-likelihood method

– Based on assumptions about the likelihood estimator of the parameters
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Quick example
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Bayesian Calibration

• Uncertain input parameters are given prior 
distribution functions

• The priors are refined based on the data resulting 
in posterior distributions which represent the new 
state of knowledge

• Bayes theorem:  

– Posterior proportional to prior * likelihood

– Assumption that there is a probabilistic 
relationship between experimental data and model 
output that can be defined by a likelihood function
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Bayesian Calibration

• Experimental data = Model output + error

• Error term incorporates measurement errors and modeling 
errors (can get more complex with a bias term)

• If we assume error terms are independent, zero mean 
Gaussian random variables with variance 2, the likelihood 
is: 

• How do we obtain the posterior? 

– It is usually too difficult to calculate analytically

– We use a technique called Monte Carlo Markov Chain 
(MCMC)
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Markov Chain Monte Carlo

• In MCMC, the idea is to generate a sampling density that is 
approximately equal to the posterior.  We want the sampling 
density to be the stationary distribution of a Markov chain.  

• Metropolis-Hastings and Gibbs sampling are the most 
commonly used algorithms

• Both have the idea of a “proposal density” which is used for 
generating Xi+1 in the sequence, conditional on Xi. 

• Implementation issues:  How long do you run the chain, how 
do you know when it is converged, how long is the burn-in 
period, etc.?

• ACCEPTANCE RATE is CRITICAL. Need to tune the proposal 
density to get an “optimal” acceptance rate, 45-50% for 1-D 
problems, 23-26% for high dimensional problems

• COMPUTATIONALLY VERY EXPENSIVE
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Markov Chain Monte Carlo
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Gaussian Processes

• Since MCMC requires tens of thousands of function 
evaluations, it is necessary to have a fast-running surrogate 
model of the simulation

• Gaussian process surrogates are often used
• GPs are based on spatial statistics for interpolating data
• In GPs, the response values Y(x1), ..Y(xk) are modeled as a 

group of multivariate normal random variables
• A GP is fully specified by its mean function (x) = E[Y(x)] and 

its covariance function C(x, x′)
• Often a constant mean is used with covariance: 

• This covariance function involves the product of d squared-
exponential covariance functions with different lengthscales 
on each dimension.  The form of this covariance function 
captures the idea that nearby inputs have highly correlated 
outputs.
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Gaussian Processes

• Pros:
– Non-parametric
– Handle multiple dimensions
– Potentially accurate (potentially)
– Can represent the uncertainty in prediction at new points

E[yn+1 | y1, y2, .. yn]  = kTC-1y
Var[yn+1 | y1, y2, .. yn]  = C(xn+1,Xn+1)-k

TC-1k 

• Cons:

– Estimation of the parameters defining the GP (hyperparameters) such as the 
lengthscales, the process variance, and mean parameters, is difficult

– Can use maximum likelihood estimation or Bayesian approach

– We use MLE

– The MLE function may be multi-modal or have a flat landscape

– GP Methods work well when the covariance matrix is not ill-conditioned but often it is

– Jitter term is sometimes added to the diagonal terms of the covariance matrix to 
make it better conditioned

– John McFarland developed a point selection algorithm which selects a subset of 
“optimal” points which minimize a cross-validation prediction error 
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Bayesian Calibration:  Overall approach

• Take initial set of samples from simulation 

– Use LHS or space-filling design

• Develop Gaussian process approximation of the simulation

• Put priors on the input parameters

• Perform Bayesian analysis using MCMC

• Generate and analyze posterior distributions

• NOTE:  GP surrogate adds a layer of uncertainty.  However, 
this is explicitly modeled in the revised likelihood: 

• Total uncertainty = (observation + model uncertainty) + 
code uncertainty
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Calore Application:  “Foam in a Can”

• Five calibration parameters:

– Applied heat flux (q2, q3, q4, q5)

– Foam Final Pore Diameter FPD

• Time-dependent temperature response

– 20 thermocouple locations

– Reduced to 9 “locations”

– Data taken approximately every 1.8 seconds

– Even with data reduction, still have over 10,000 
data points
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Response Data
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Response Data

• 50 LHS samples of CALORE 
code

• Each sample predicts at each of 
9 locations

• Response at each location is fit 
with 2 GPs representing 
different behavior after 500 
seconds

• Reduced the code to 12.5 sec 
increments

• 18 GPs

• Used MLE and point selection to 
estimate GP parameters for 
each

• Then, use the 18 GPs in the 
likelihood function  MCMC to 
construct posterior
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Bayesian calibration results

• Samples from f (| d)

• Posterior statistics (best estimate=mean)

• Marginal histograms

• Joint confidence regions (kernel density estimates)
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Bayesian calibration results

Method RMS Function 
Evaluations

Bayesian mean 19.4 50

DIRECT 32.3 65

Nominal 43.4
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Calibrated Predictions vs. Observations



20

Joint Confidence Region Estimation

• Show results (NOTE:  These are very preliminary, will 
be changed.  The nature of the picture will be the same, 
but the points may be located in different places
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Summary

• Computational issues with each

– Bayesian calibration
• GP problems:  MLE estimation of the parameters, ill-

conditioning of the covariance matrix, stationary variance 
assumption

• MCMC:  testing for convergence done in an ad-hoc fashion

– Nonlinear regression methods
• Model assumptions

• Linear approximations often require Jacobian or Hessian 
estimates, not always accurate

• SSE contour estimation expensive

– Both methods require surrogates, use optimization 
within the overall strategy (e.g., MLE estimation)

– Both methods account for uncertainty in the parameters 
based on some idea of likelihood of the parameters in 
certain regions of the space given the data


