

Calibration under Uncertainty: Comparison of Least-Squares and Bayesian methods

Laura P. Swiler, John McFarland, Kay Vugrin

Sandia National Laboratories
Optimization and Uncertainty Estimation
Albuquerque, NM
87185-1318
Jpswile@sandia.gov
505-844-8093

**Presentation at CSRI Workshop:
Large Scale Inverse Problems and Quantification of Uncertainty
Santa Fe, NM
September 10-12, 2007**

Goals of Presentation

- Present two approaches to parameter estimation
 - Classical Statistics
 - Methods for generating joint confidence regions in nonlinear regression problems
 - Bayesian Calibration Methods
 - Parameters are random variables, given a prior distribution, want to estimate a posterior distribution that incorporates the data
- Compare and contrast the approaches, identify assumptions/difficulties with each
- Apply the approaches to a real application
 - Calore thermal simulation of a component encapsulated by foam

Why is parameter estimation difficult?

- Parameter estimation / model calibration:
 - Use observations of response to make inference about model inputs
- Observations contain noise
- Model is imperfect
- Many combinations of parameter values yield comparable fits
- Model is expensive

Nonlinear Regression Methods

- Extension of linear regression: $d = f(\theta, x) + \varepsilon$
- To determine the optimal parameters, one minimizes the error sum of squares S :

$$S(\theta) = \sum_{i=1}^n [f(\theta, x_i) - d_i]^2 = \sum_{i=1}^n r(\theta)^2$$

- Specialized techniques have been developed to find the least squares estimator $\hat{\theta}$ of the true minimum θ^*
- If one assumes that the residuals are close to zero near the solution, the Hessian matrix of S can be approximated using only first derivatives of the residuals r .
- Gauss-Newton methods are particularly effective on this type of problem
- We have three such methods in DAKOTA: Gauss-Newton based in OPT++, NLSSOL (SQP), NL2SOL (trust-region method)

Joint Confidence Regions

- **Linear Approximation Method**

- In linear regression, SSE is quadratic, and contours of constant SSE are ellipsoids.
 - Can approximate the nonlinear function with Taylor series expansion about the parameter estimate $\hat{\theta}$

$$\{\theta : (\theta - \hat{\theta})H(\hat{\theta})(\theta - \hat{\theta}) \leq S(\hat{\theta})\left(\frac{p}{n-p}\right)F_{p,n-p}^{\alpha}\}$$

- For very nonlinear models or in situations where the Hessian approximation is poor, this can be inaccurate

- **F-test Method**

- Based on the assumption that the error terms are jointly normally distributed

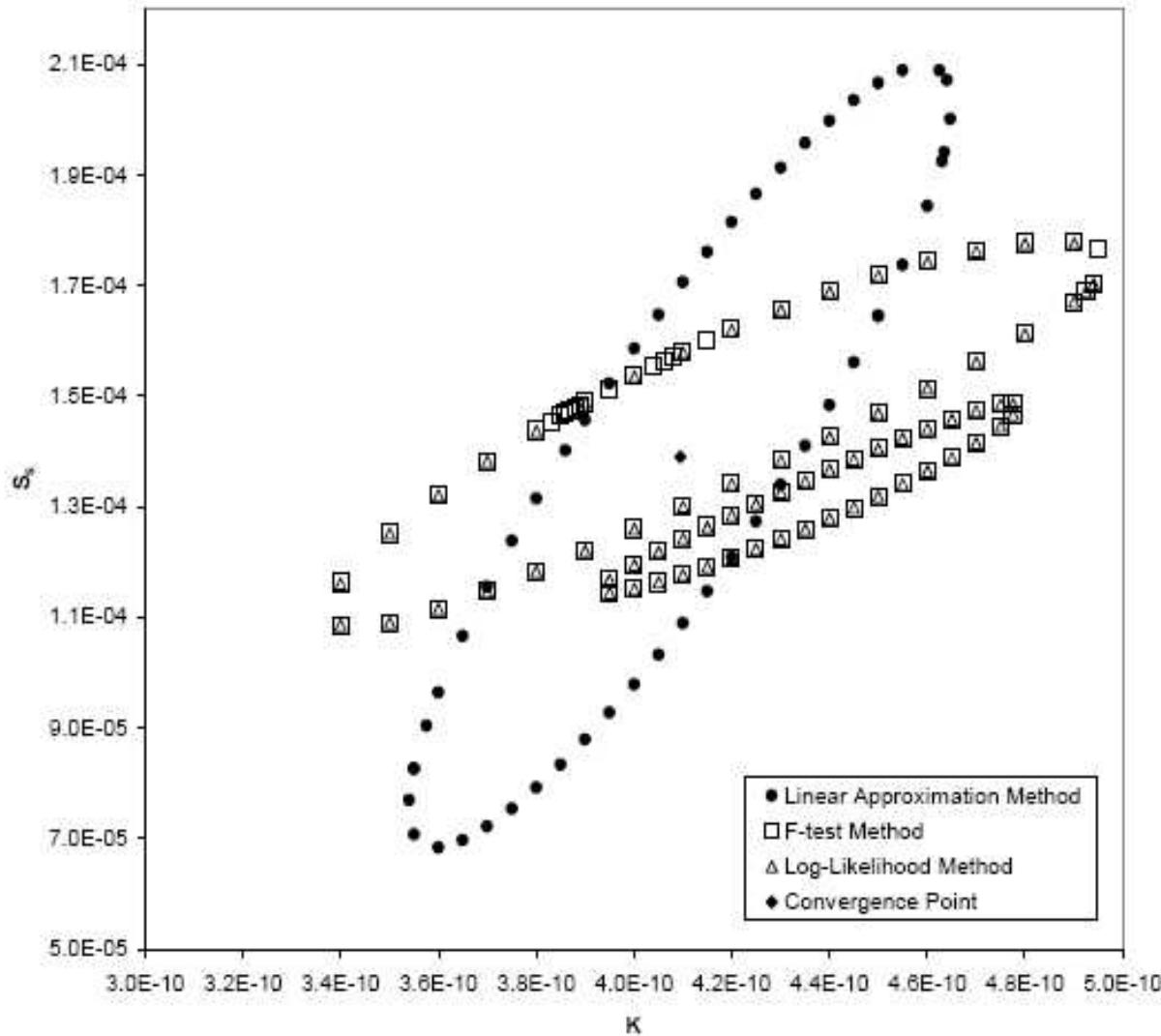
$$\{\theta : \frac{S(\theta) - S(\hat{\theta})}{S(\hat{\theta})} \leq \left(\frac{p}{n-p}\right)F_{p,n-p}^{\alpha}\}$$

- **Log-likelihood method**

- Based on assumptions about the likelihood estimator of the parameters

$$\{\theta : n[\log S(\theta) - \log S(\hat{\theta})] \leq \chi_p^2(\alpha)\}$$

Quick example



Bayesian Calibration

- Uncertain input parameters are given prior distribution functions
- The priors are refined based on the data resulting in posterior distributions which represent the new state of knowledge
- **Bayes theorem:**
$$f(\theta | D) = \frac{\pi(\theta) f(D | \theta)}{\int_{\theta} \pi(\theta) f(D | \theta) d(\theta)}$$
 - Posterior proportional to prior * likelihood
$$f(\theta | D) \propto \pi(\theta) L(\theta)$$
 - Assumption that there is a probabilistic relationship between experimental data and model output that can be defined by a likelihood function

Bayesian Calibration

- Experimental data = Model output + error

$$d_i = G(\boldsymbol{\theta}, \mathbf{x}_i) + \varepsilon_i$$

- Error term incorporates measurement errors and modeling errors (can get more complex with a bias term)
- If we assume error terms are independent, zero mean Gaussian random variables with variance σ^2 , the likelihood is:

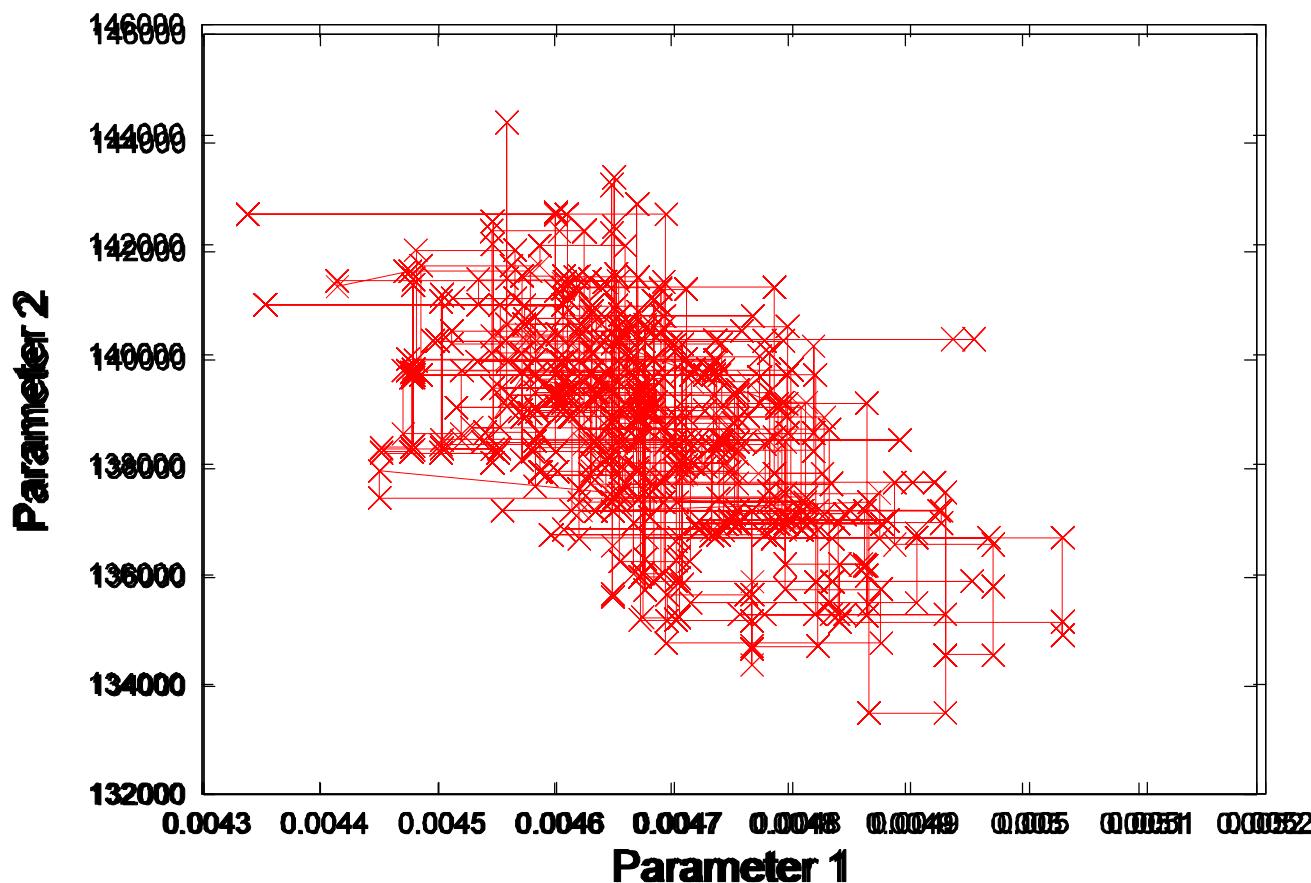
$$L(\boldsymbol{\theta}) = \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(d_i - G(\boldsymbol{\theta}, \mathbf{x}_i))^2}{2\sigma^2} \right]$$

- How do we obtain the posterior?
 - It is usually too difficult to calculate analytically
 - We use a technique called Monte Carlo Markov Chain (MCMC)

Markov Chain Monte Carlo

- In MCMC, the idea is to generate a sampling density that is approximately equal to the posterior. We want the sampling density to be the stationary distribution of a Markov chain.
- Metropolis-Hastings and Gibbs sampling are the most commonly used algorithms
- Both have the idea of a “proposal density” which is used for generating X_{i+1} in the sequence, conditional on X_i .
- Implementation issues: How long do you run the chain, how do you know when it is converged, how long is the burn-in period, etc.?
- ACCEPTANCE RATE is CRITICAL. Need to tune the proposal density to get an “optimal” acceptance rate, 45-50% for 1-D problems, 23-26% for high dimensional problems
- COMPUTATIONALLY VERY EXPENSIVE

Markov Chain Monte Carlo



Gaussian Processes

- Since MCMC requires tens of thousands of function evaluations, it is necessary to have a fast-running surrogate model of the simulation
- Gaussian process surrogates are often used
- GPs are based on spatial statistics for interpolating data
- In GPs, the response values $Y(x_1), \dots, Y(x_k)$ are modeled as a group of multivariate normal random variables
- A GP is fully specified by its mean function $\mu(x) = E[Y(x)]$ and its covariance function $C(x, x')$
- Often a constant mean is used with covariance:

$$C(x, x') = \nu_o \exp \left\{ - \sum_{u=1}^d \rho_u^2 (x_u - x'_u)^2 \right\}$$

- This covariance function involves the product of d squared-exponential covariance functions with different lengthscales on each dimension. The form of this covariance function captures the idea that nearby inputs have highly correlated outputs.

Gaussian Processes

- **Pros:**

- Non-parametric
- Handle multiple dimensions
- Potentially accurate (potentially)
- Can represent the uncertainty in prediction at new points

$$E[y_{n+1} | y_1, y_2, \dots y_n] = k^T C^{-1} y$$

$$\text{Var}[y_{n+1} | y_1, y_2, \dots y_n] = C(x_{n+1}, X_{n+1}) - k^T C^{-1} k$$

- **Cons:**

- Estimation of the parameters defining the GP (hyperparameters) such as the lengthscales, the process variance, and mean parameters, is difficult
- Can use maximum likelihood estimation or Bayesian approach
- We use MLE
- The MLE function may be multi-modal or have a flat landscape
- GP Methods work well when the covariance matrix is not ill-conditioned but often it is
- Jitter term is sometimes added to the diagonal terms of the covariance matrix to make it better conditioned
- John McFarland developed a point selection algorithm which selects a subset of “optimal” points which minimize a cross-validation prediction error

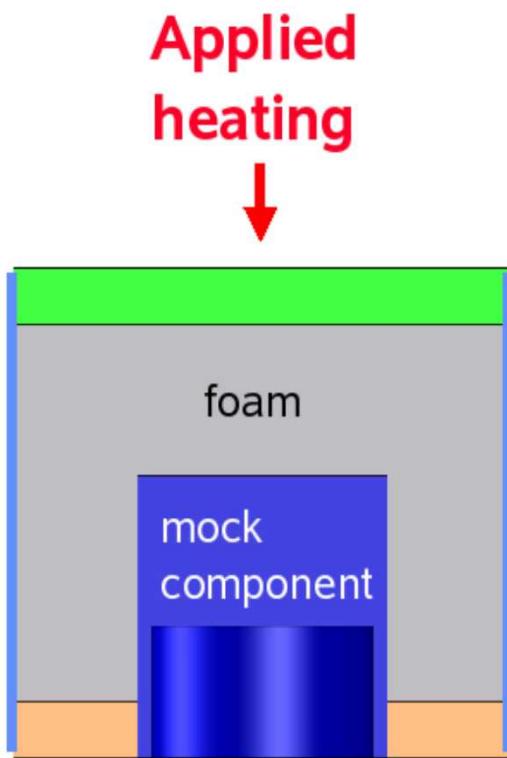
Bayesian Calibration: Overall approach

- Take initial set of samples from simulation
 - Use LHS or space-filling design
- Develop Gaussian process approximation of the simulation
- Put priors on the input parameters
- Perform Bayesian analysis using MCMC
- Generate and analyze posterior distributions
- NOTE: GP surrogate adds a layer of uncertainty. However, this is explicitly modeled in the revised likelihood:

$$L(\boldsymbol{\theta}) = 2\pi^{-n/2} |\Sigma|^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{d}_i - \boldsymbol{\mu}_{GP})^T \boldsymbol{\Sigma}^{-1} (\mathbf{d}_i - \boldsymbol{\mu}_{GP})\right]$$
$$\boldsymbol{\Sigma} = \sigma^2 \mathbf{I} + \boldsymbol{\Sigma}_{GP}$$

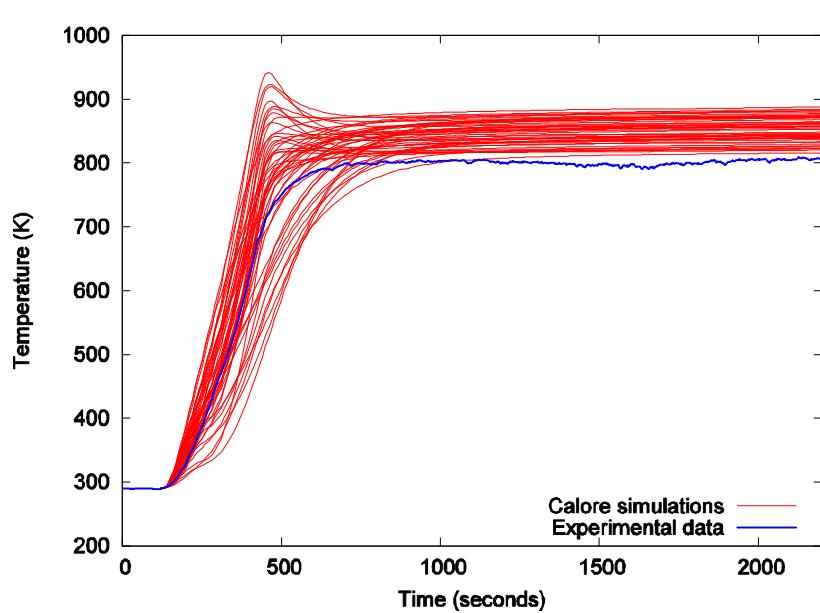
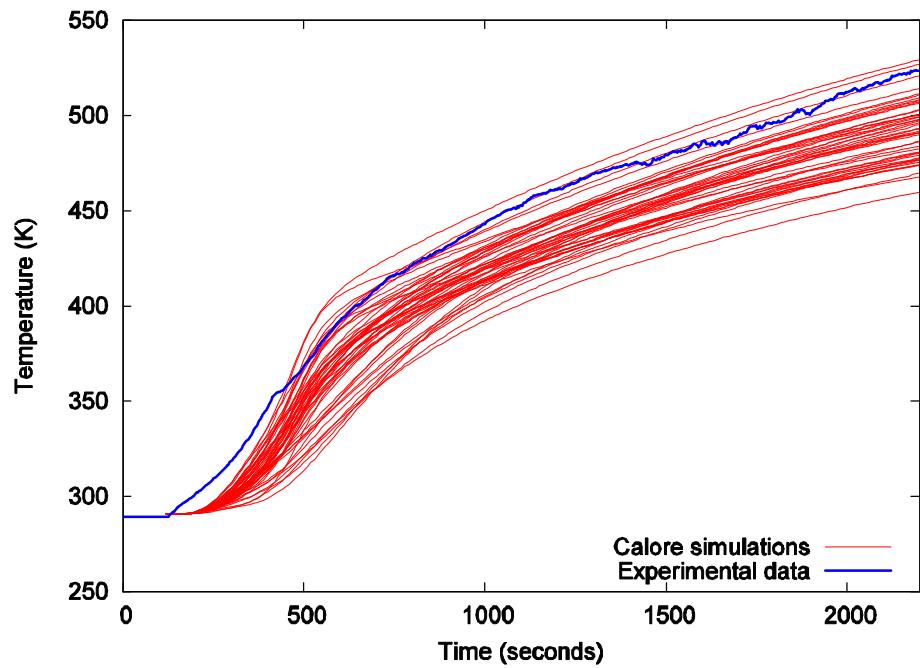
- Total uncertainty = (observation + model uncertainty) + code uncertainty

Calore Application: “Foam in a Can”

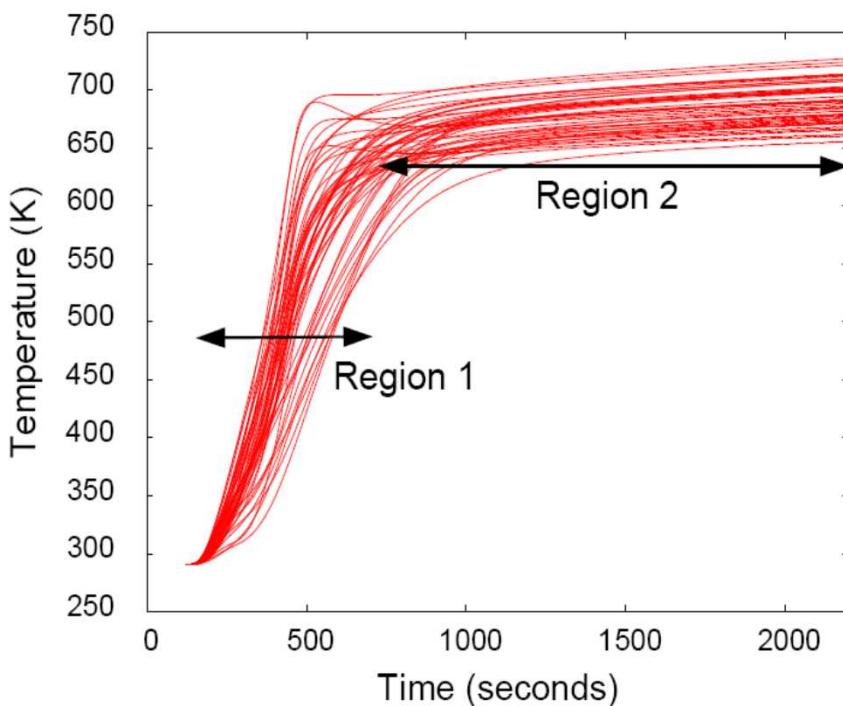


- Five calibration parameters:
 - Applied heat flux (q_2, q_3, q_4, q_5)
 - Foam Final Pore Diameter FPD
- Time-dependent temperature response
 - 20 thermocouple locations
 - Reduced to 9 “locations”
 - Data taken approximately every 1.8 seconds
 - Even with data reduction, still have over 10,000 data points

Response Data



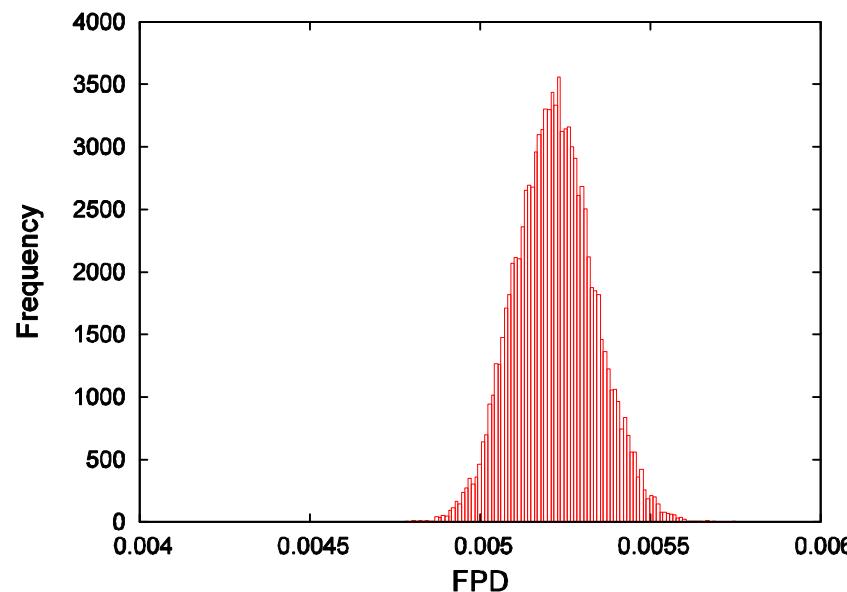
Response Data



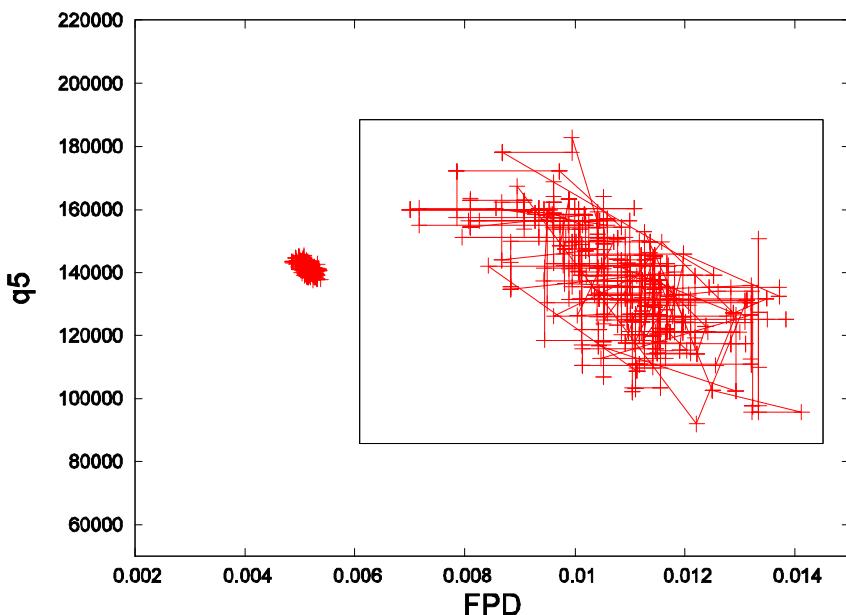
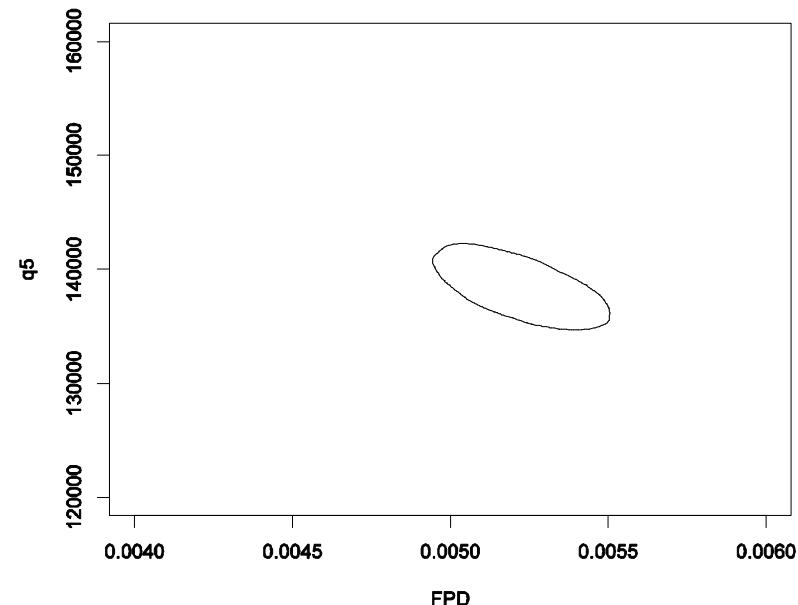
- 50 LHS samples of CALORE code
- Each sample predicts at each of 9 locations
- Response at each location is fit with 2 GPs representing different behavior after 500 seconds
- Reduced the code to 12.5 sec increments
- 18 GPs
- Used MLE and point selection to estimate GP parameters for each
- Then, use the 18 GPs in the likelihood function → MCMC to construct posterior

Bayesian calibration results

- Samples from $f(\theta | d)$
- Posterior statistics (best estimate=mean)
- Marginal histograms
- Joint confidence regions (kernel density estimates)

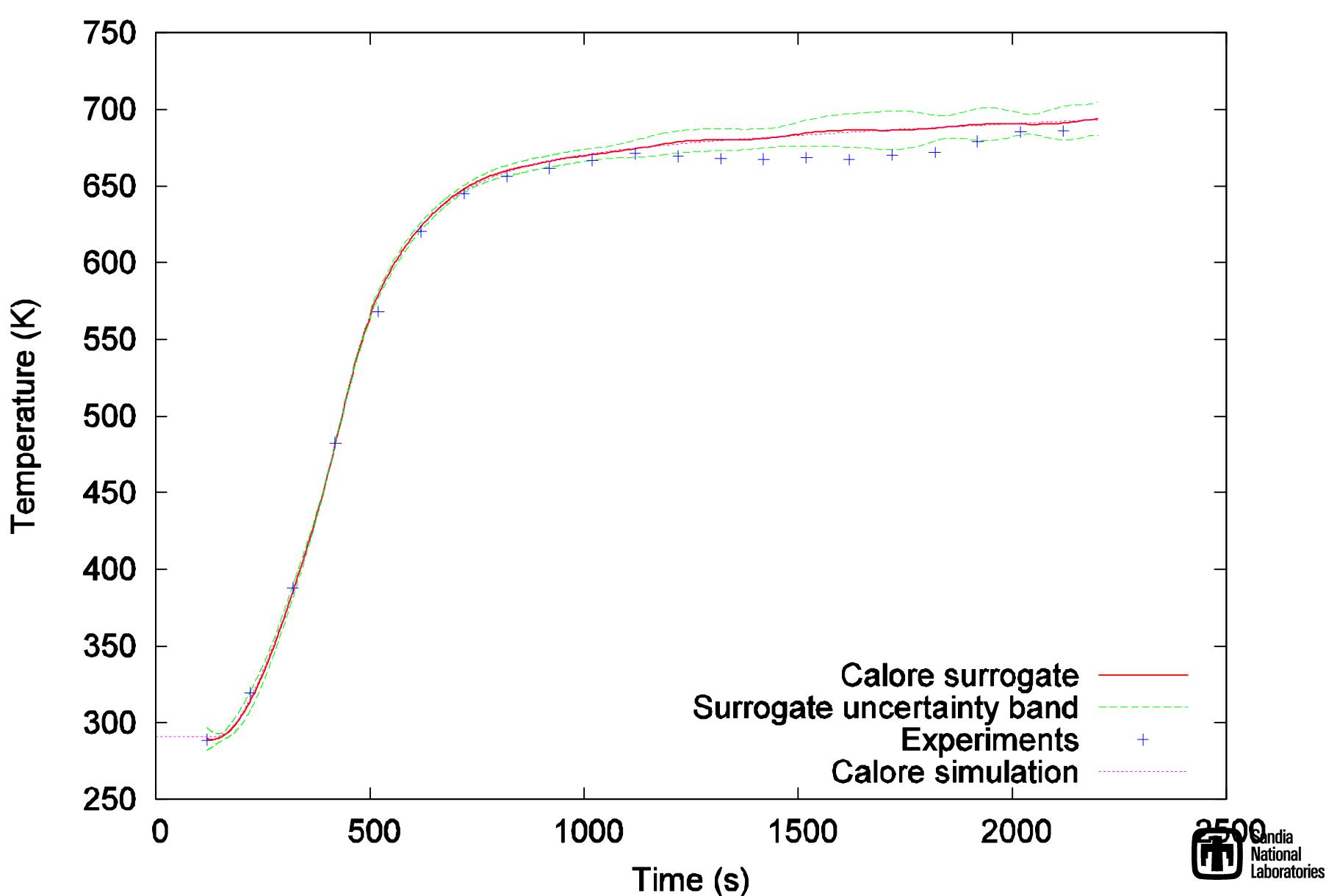


Bayesian calibration results



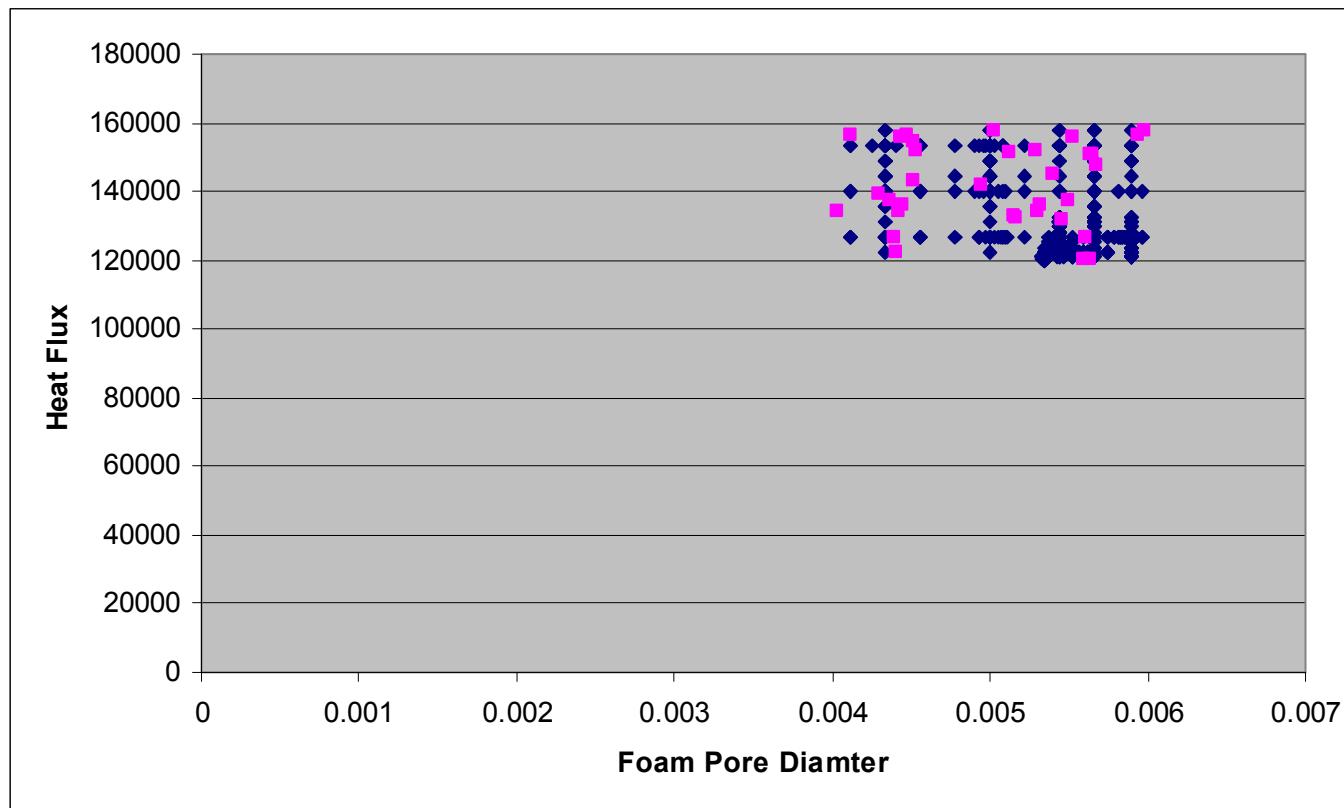
Method	RMS	Function Evaluations
Bayesian mean	19.4	50
DIRECT	32.3	65
Nominal	43.4	

Calibrated Predictions vs. Observations



Joint Confidence Region Estimation

- Show results (NOTE: These are very preliminary, will be changed. The nature of the picture will be the same, but the points may be located in different places)



Summary

- Computational issues with each
 - Bayesian calibration
 - GP problems: MLE estimation of the parameters, ill-conditioning of the covariance matrix, stationary variance assumption
 - MCMC: testing for convergence done in an ad-hoc fashion
 - Nonlinear regression methods
 - Model assumptions
 - Linear approximations often require Jacobian or Hessian estimates, not always accurate
 - SSE contour estimation expensive
 - Both methods require surrogates, use optimization within the overall strategy (e.g., MLE estimation)
 - Both methods account for uncertainty in the parameters based on some idea of likelihood of the parameters in certain regions of the space given the data