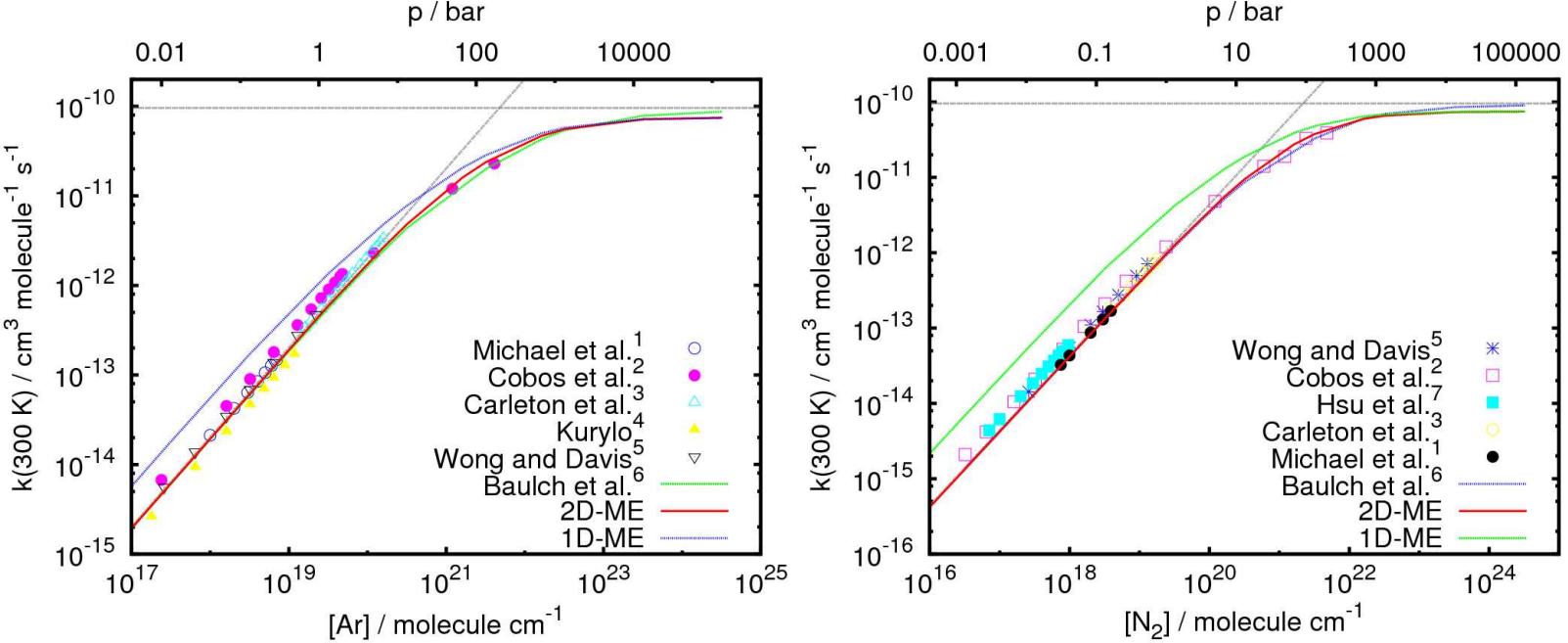


Summary


Potential energy surfaces involved in the reactions $\text{OH} + \text{O} \leftrightarrow \text{HO}_2 \leftrightarrow \text{H} + \text{O}_2$ and $\text{H} + \text{OH} \leftrightarrow \text{H}_2\text{O}$ have been characterized at the CASPT2/aug-cc-pVTZ level of theory. High-pressure limiting rate coefficients for the reactions $\text{H} + \text{O}_2 \rightarrow \text{HO}_2$ and $\text{H} + \text{OH} \rightarrow \text{H}_2\text{O}$ have been calculated using variable reaction coordinate transition state theory. Over the temperature range 300-3000 K the following expressions were obtained: $k_\infty(\text{H} + \text{O}_2) = (25T^{-0.367} + 0.075T^{0.702}) \times 10^{-11}$ and $k_\infty(\text{H} + \text{OH}) = 4.17 \times 10^{-11} T^{0.234} \exp(57.5/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The pressure dependence of the reaction $\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}$ was investigated using a 2D Master equation. For Ar and N₂ as bath gases, the following low-pressure limiting rate coefficients were obtained over the temperature range 300-2000 K: $k_{0,\text{Ar}} = 7.1 \times 10^{-29} T^{1.37} \exp(-119/T)$ and $k_{0,\text{N}_2} = 1.6 \times 10^{-27} T^{1.7} \exp(-258/T) \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}$. The possible contribution from the $^2\text{A}'$ electronic state to the reaction $\text{OH} + \text{O} \rightarrow \text{H} + \text{O}_2$ has also been considered. The high value of the minimum of the seam of crossing between the $^2\text{A}'$ and $^4\text{A}''$ states suggests that the contribution is small.

Motivation

Today it is evident that the use of fossil fuels has significantly increased the atmospheric concentration of CO₂ and contributed to an unequivocal warming of the climate system. Use of H₂ manufactured from natural gas to create "decarbonized fuels" has the potential to significantly reduce CO₂ emissions from the power production industry. Utilization of H₂ as gas turbine fuel necessitates accurate description of the combustion process at elevated pressures. However, even apparently small differences between the available chemical mechanisms for H₂ combustion can have a significant effect on predicted flame properties. To help improve the chemical insight into the combustion of H₂, we have initiated a quantum chemistry study of the reactions OH + O \leftrightarrow HO₂ \leftrightarrow H + O₂ and H + OH \leftrightarrow H₂O at conditions relevant for gas turbines.

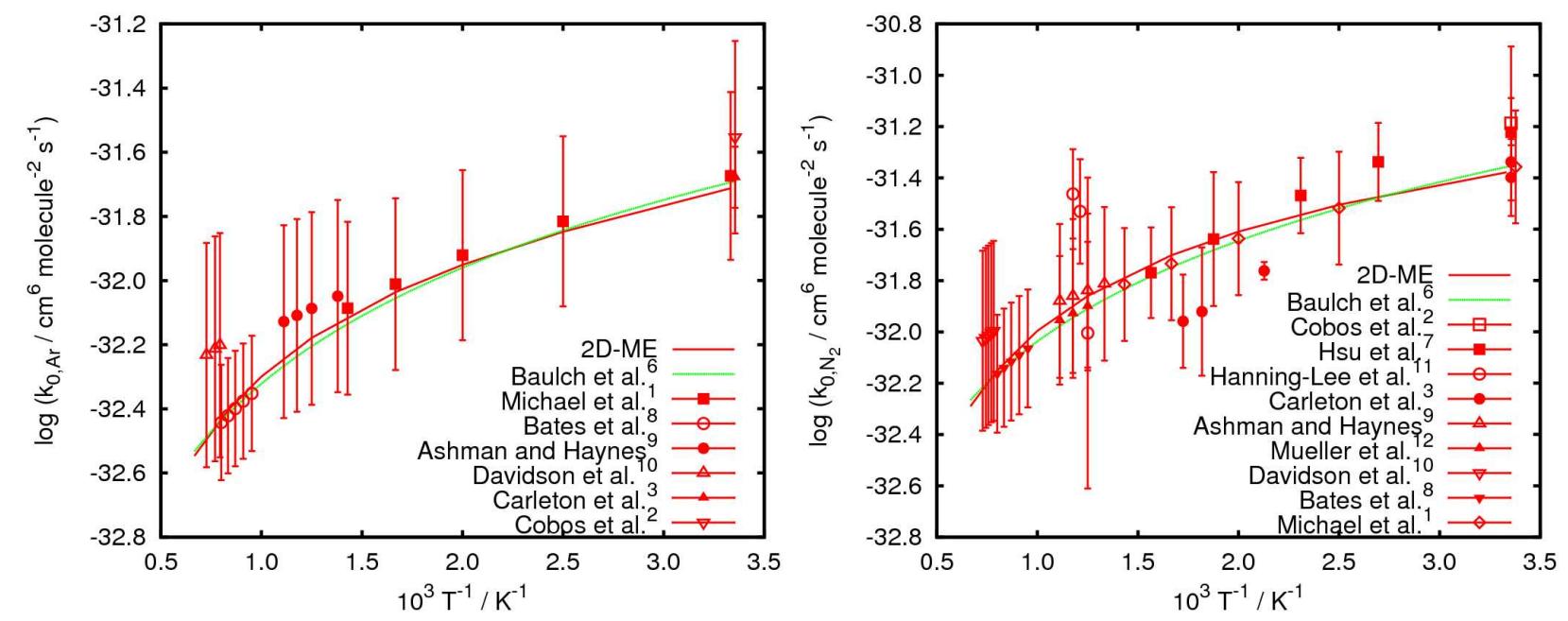


Figure 1. Vertical excitation energies along the ground-state minimum energy path for the reaction $\text{O} + \text{OH} \leftrightarrow \text{HO}_2 \leftrightarrow \text{H} + \text{O}_2$ as calculated at the CASPT2/aug-cc-pVTZ level of theory.

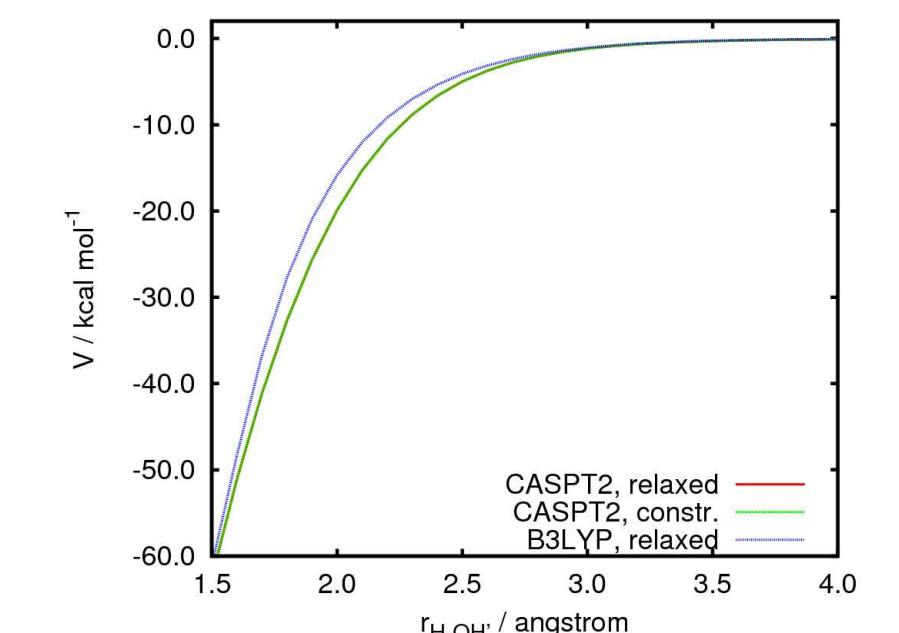


Figure 2. Falloff curves for the reaction $\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}$ with Ar (left) and N₂ (right) as bath gas at 300 K as calculated using 1D and 2D Master equations. The plotted low-pressure and high-pressure limiting rate coefficients are the values preferred by the IUPAC panel.⁶ $\langle \Delta E_{\text{down}} \rangle = 45(T/298 \text{ K})^{0.95} \text{ cm}^{-1}$ for Ar as bath gas, and $\langle \Delta E_{\text{down}} \rangle = 100(T/298 \text{ K})^{0.65} \text{ cm}^{-1}$ for N₂ as bath gas.

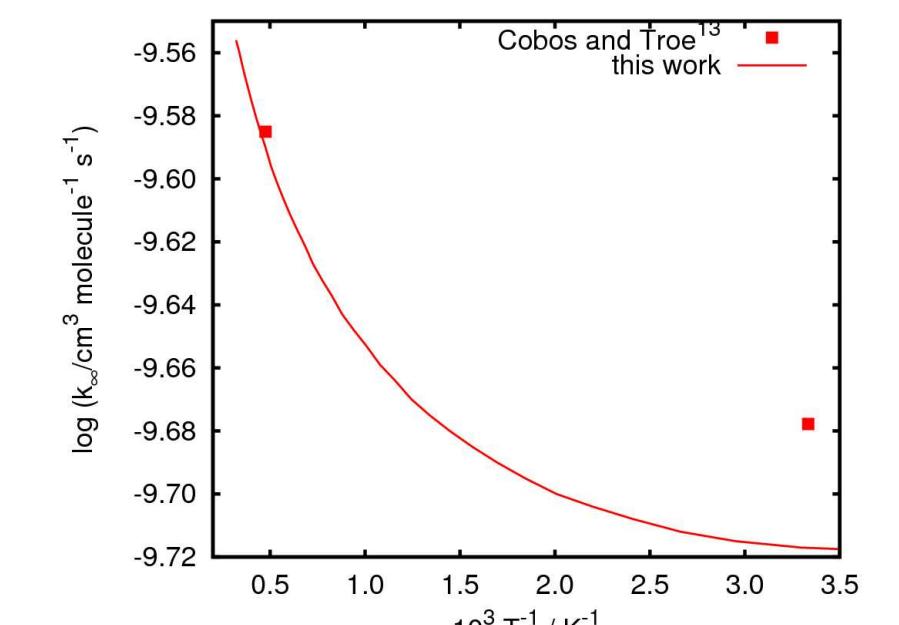

Results

Figure 3. Low-pressure limiting rate coefficient as a function of temperature for the reaction $\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}$ with Ar (left) and N₂ (right) as bath gas as calculated using a 2D Master equation.

Figure 4. Minimum energy path for the reaction $\text{H} + \text{OH} \rightarrow \text{H}_2\text{O}$ as a function of the H-OH' bond length as calculated using the CASPT2 and B3LYP models employing the aug-cc-pVTZ basis set with relaxed and constrained HO-H' bond length.

Figure 5. High-pressure limiting rate coefficient as a function of temperature for the reaction $\text{H} + \text{OH} \rightarrow \text{H}_2\text{O}$ as calculated using variable reaction coordinate transition state theory.

Methods

Potential energy hypersurfaces of the studied reaction systems were investigated using the CASPT2 method. The active space used to describe the $\text{H} + \text{O}_2$ reaction system consisted of 7 electrons in 5 orbitals, while the active space used for the $\text{H} + \text{OH}$ system consisted of 4 electrons in 3 orbitals. For the $\text{H} + \text{OH}$ reaction system, spin-orbit matrix elements were computed using the Breit-Pauli Hamiltonian. The CASPT2 calculations were carried out using the MOLPRO 2006 package. Additional calculations were carried out with the B3LYP model using Gaussian 98. Dunning's correlation-consistent aug-cc-pVTZ basis set was employed in all calculations except in the calculation of the spin-orbit matrix elements where the Pople-style 6-311++G(3df,p) basis set was used.

High-pressure limiting rate coefficients were calculated using variable reaction coordinate transition state theory with multifaceted dividing surfaces (VRC-TST).¹⁴ Within VRC-TST, dividing surfaces are defined in terms of a fixed distance between pivot points on each fragment, and both the location and the separation between the pivot points are varied to determine the minimum reactive flux through a dividing surface. The pivot points were located on each nuclei for both the $\text{H} + \text{O}_2$ and the $\text{H} + \text{OH}$ reaction systems. The reactive flux through a dividing surface was determined using a crude Monte Carlo sampling method where the electronic structure of points on the dividing surface was calculated on the fly.

The pressure dependence of the reaction $\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}$ was investigated using a two-dimensional Master equation (2D-ME). The 2D-ME was solved using the methods of Miller et al.¹⁵ The energy transfer function for deactivating collisions was modeled using a "single exponential down" expression, and the collision rate was taken as the Lennard-Jones collision rate.

Acknowledgement

This work was supported by the Norwegian Research Council under Contract No. 173826/I30. The Norwegian High Performance Computing Consortium is acknowledged for grants of computing time. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. The authors are grateful to Dr. S. J. Klippenstein and Dr. L. B. Harding for discussions.

References

- Michael, J. V.; Su, M. C.; Sutherland, J. W.; Carroll, J. J.; Wagner, A. F. *J. Phys. Chem. A* **2002**, *106*, 5297.
- Cobos, C. J.; Hippler, H.; Troe, J. *J. Phys. Chem.* **1985**, *89*, 342.
- Carleton, K. L.; Kessler, W. J.; Marinelli, W. J. *J. Phys. Chem.* **1993**, *97*, 6412.
- Kurylo, M. J. *J. Phys. Chem.* **1972**, *76*, 3518.
- Wong, W.; Davis, D. *Int. J. Chem. Kinet.* **1974**, *6*, 401.
- Baulch, D. L.; Bowman, C. T.; Cobos, C. J.; Cox, R. A.; Just, T.; Kerr, J. A.; Pilling, M. J.; Stocker, D.; Troe, J.; Tsang, W.; Walker, R. W.; Warnatz, J. *J. Phys. Chem. Ref. Data* **2005**, *34*, 757.
- Hsu, K. J.; Anderson, S. M.; Durant, J. L.; Kaufman, F. *J. Phys. Chem.* **1989**, *93*, 1018.
- Bates, R. W.; Golden, D. M.; Hanson, R. K.; Bowman, C. T. *Proc. Chem. Chem. Phys.* **2001**, *3*, 2337.
- Ashman, P. J.; Haynes, B. S. *Proc. Combust. Inst.* **1998**, *27*, 185.
- Davidson, D. F.; Petersen, E. L.; Roehrig, M.; Hanson, R. K.; Bowman, C. T. *Proc. Combust. Inst.* **1996**, *26*, 481.
- Hanning-Lee, M. A.; Pilling, M. J.; Warr, J. F. *J. Chem. Soc., Faraday Trans.* **1991**, *87*, 2907.
- Mueller, M. A.; Yetter, R. A.; Dryer, F. L. *Proc. Combust. Inst.* **1998**, *27*, 177.
- Cobos, C. J.; Troe, J. *J. Chem. Phys.* **1985**, *83*, 1010.
- (a) Georgievskii, Y.; Klippenstein, S. J. *J. Chem. Phys.* **2003**, *118*, 5442. (b) Georgievskii, Y.; Klippenstein, S. J. *J. Phys. Chem. A* **2003**, *107*, 9776.
- (a) Miller, J. A.; Klippenstein, S. J.; Raffy, C. *J. Phys. Chem. A* **2002**, *106*, 4904. (b) Miller, J. A.; Klippenstein, S. J. *J. Phys. Chem. A* **2004**, *108*, 8296. (c) Miller, J. A.; Klippenstein, S. J. *J. Phys. Chem. A* **2006**, *110*, 10528.