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Overview

Goals: To communicate the following . . .
 The importance of analytical intuition

 The importance of rigorous numerical design

 The ease of implementing numerical codes

 The need for both multiphysics and VLSI codes

Outline
 The Finite Difference Time Domain (FD-TD) Technique 

 Mode Evolution Devices

 Filter Design and a Polarization Independent Microphotonic Circuit

 Some Special Cases:  Periodic Boundary Conditions and Conductors

 A Multi-Physics Problem: Thermal Microphotonic Focal Plane Array (TM-FPA)



Analytic Intuition: Coupled Mode Theory

Coupled Mode Theory (CMT) Application
 Between a pair of waveguides:  The coupling between otherwise orthogonal modes is 
determined by the degree of the overlap in the region of perturbation

 Adiabatic Transition:

Use CMT for intuition but not numerical results
 CMT is limited by number of modes considered

 Scattering, loss, and even coupling strength are generally off

 CMT will not provide generate non-intuitive results

 Computers have become sufficient fast to do rigorous numerical simulations
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Finite-Difference Time-Domain Technique

Why choose FD-TD?

 Simple discretization of Maxwell’s equations with no other approximations

 Why not Beam Propagation Method and/or Eigenmode Expansion?

– Beam Propagation Method based on Paraxial Wave Equation (limited angles)

– Eigenmode Expansion great for tapers, but not for abrupt transitions

How FD-TD is implemented
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Finite Difference Time Domain Considerations

Commercial Code, Own Code, Open Source Codes

 Commercial codes tend not to be well parallelized or portable  limited utility

 FD-TD is easy to program with some guidance (book by A. Taflove)

 If you write your own code, you will always know what you is in the code

 Also, open source codes by (e.g. Steven Johnson’s MEEP)

Computer Selection

 Why is FD-TD so slow?  Memory bandwidth code, cores alone will not help

 Specfp benchmark swim_m.f www.spec.org a good metric of performance

– 32-core SGI Altix 4700 Bandwidth System, swim_m.f (62.8 seconds)

– 16-core IBM, swim_m.f (58.8 seconds)

– 8-core Intel (i.e. Xeon Quad Cores), swim_m.f (834 seconds)

 What is the difference between these machines  Memory Bandwidth

http://www.spec.org
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Implementation of FD-TD

Procedure
 Complex vector mode-solver to determine Q and find 
bus and ring waveguide modes

 Launch appropriate modes as Gaussian pulse

 Take Discrete Fourier Transforms (DFTs) & overlaps 
to determine complex scattering coefficients

 Use scattering coefficients in Transfer Matrix Method 
to generate filter response

M. Popovic



Redesigned Filters

Improvements
Advanced coupler design incorporated

Higher-Q ring waveguide utilized

Slightly wider bandwidth

Achieved 3dB drop-port losses

> 15 dB thru-port extinction



Mode Evolution Based Devices
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Example: Microphotonic Polarization Rotator

Mode Coupling

 Requires: Precise coupling & phase matching

 Result: Wavelength & fabrication sensitive

Mode Evolution

 Requires: Prevent mode coupling (max /)

 Result: Inherently wavelength & fabrication insensitive

 Challenge: Implementing a twist on a chip

Mode Evolution Based Polarization Rotator

Most confined mode aligned to geometric 
axis of guide (result of Gauss’ Law)

Large aspect ratio enhances / 
minimizes coupling

 Intuition indicates is should work, but 
rigorous simulations are required to confirm 
the design



Design and Experimental Results

Polarization Rotator - Experimental Results

Polarization Rotator - Numerical Results



Mode Evolution Based Polarization Splitter

Polarization Splitter Design

TE11 and TM11 modes separate

Large ratio of / by geometry

Coupling between TM11 and TM21

modes limits device performance

Splitter / Rotator can be combined



Polarization Splitter-Rotators

Integrated Polarization Splitter-Rotator - Experimental Results

Integrated Polarization Splitter - Experimental Results



Integrated, P-Independent Optical Add-Drop

Results
Demonstrated polarization 
independence in terms of frequency 
matching and loss

Matching of resonant frequencies to 
~1GHz

Worked on the 1st try with all devices 
on the chip
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The Introduction of Metals

How do we implement metals
 Metals introduced by adding a terms for the current densities Jx, Jy, and Jz

 Note: Frequency dependent refractive index and conductivity

– Dispersion accounted for by implementing the Drude Model

 Drude Model Accurately Models Complex Refractive Index in Mid-to-Long IR

 Analytic & FD-TD Reflection Coefficients Nearly Identical (0.98192 vs. 0.98198)
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 = 4m
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Overlap

ngold= 3.4581+j25.5

n0 = 1.0

Ranalytic = 0.98192
RFD-TD = 0.98198

ngold= 3.4581+j25.5

Example: Reflection from Closed Metal Waveguide

Hz-field

ntungsten= 1.747+j19.47



Simulation in the Terahertz Domain

Simulation of cut in contact of a Terahertz Quantum Cascade Laser
 Question: Do you cut through the highly doped GaAs layer or not?

 Intuition (Optics): Leaving highly doped GaAs layer intact will minimize radiation

 Answer: Leaving the highly doped GaAs layer intact can cause massive losses

 Why? 



Well . . . Circuit Theory, Look at Jx



Periodic FD-TD

Periodic Boundary Conditions Introduced

 Normal incidence is straightforward

 Off-normal incidence requires substitution of 
variables that complicates the code a bit

 Agreement between RCWA and P-FDTD quite good

2m

2m

 = 4m

Ez-field

RCWA Results - Black Lines
P-FDTD - Colored Lines

RCWA Results - Black Lines
P-FDTD - Colored Lines



A Multi-Physics Problem:
Thermal Microphotonic Focal Plane Array 
(TM-FPA) for Uncooled Thermal Imaging
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Limits to Room Temperature Bolometric Detection

Bolometric Detection: Detect change in resistance due change in temperature
 Despite great strides in past decades, bolometric performance has plateaued

 Non-ideal thermal detector:  Dissipating power in sensor, inducing temperature change

Fundamental Limits
 Shot Noise: (1) Measurement of current/voltage, and (2) induced thermal fluctuations

 Johnson Noise (Thermal Electron Fluctuations)

 Phonon Noise (Thermal Phonon Fluctuations) 

Practical Limits
 Best bolometers achieve NEP > 210-11 W/Hz (NETD ~ 30mK)

 Perturbing measurement / small scale factor 

make bolometers susceptible to Johnson, 1/, etc.
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Thermo-Microphotonic Detection

Scale Factor of the T-O Approach

For Q = 106, and G = 10-8 W/K in Si
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Noise Limitations
 No Johnson noise

 Large scale factor min. impact of shot noise

 Fundamentally, limited only by Phonon Noise

 Measurement does not perturb sensor

 No metal paths back to substrate 



Simulation of a Multiphysics Problem

Thermal Design in Silicon Nitride
 Silicon nitride (200nm wide) tethers to minimize G

 ANSYS FEM predicts G = 1.1  10-7 W/K

 Thermal Time Constant  2 ms

 Corresponding Phonon NEP = 710-13 W/√Hz

Microphotonic Design Considerations
 Sufficiently small bend radii (R = 8m)

 High-Q (>105) demonstrated in SiN (M. Shaw, Sandia)

 Sufficiently large thermo-optic response (Δ ~ 2 GHz/K)

 No significant nonlinearities

Antenna / Absorber Design (RCWA Analysis)
 Fortunately, silicon nitride absorbs from 9-12m
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Initial Experimental Results

Preliminary Results
 Correct sign on thermo-optic shift
 Time Constant of ~0.028ms indicating a conductivity of G ~ 610-6 (Limited by Air)
 Not yet prepared to comment on Signal-to-Noise Ratio

FIB Image of SiN Suspended Disk
with Deposited Tungsten

Response to Illuminations by 670nm Laser

670nm
Illumination



TM-FPA on a Large Scale

Like any Focal Plane Array, there is a desire to reach Millions of Pixels

 Approach: Use a WDM-based readout

 Is this reasonable?

 How do we model this in various states?

 Certainly, some challenges lie ahead to deal with complex VLSI microphotonic systems

Many Partially Overlapping Resonances



Summary and Conclusions

Design Approach
 Coupled Mode Theory for used for intuition

 3D FD-TD / EME for electromagnetic simulations

 Transfer Matrix Method for large scale problems

Matching Numerical Models with Experiment
 Quite good on passive devices

 Active / multiphysics devices - not yet there

– All domains simulated independently - very much imperfect

– Quantum fluctuations not captured

Future Needs
 Need for multiphysics codes (electromagnetic, thermal, mechanical, electrical etc.)

– Nice to see a time domain code with all effects captured & statistical noise sources

 Need for object oriented transfer matrix code for VLSI with device library capability


