SAND2007- 4804C

Seshat Collects MPI Traces: Extended Abstract

Rolf Riesen*

Sandia National Laboratories
rolf@sandia.gov

Traces collected at the MPI level can help understand the behavior of applications by
using these traces to visualize the communication patterns of an application. The traces
can also be used for debugging and as input to system simulators. These trace driven
simulators can help with learning how an application makes use of the communication
fabric and how an application will perform on a next-generation machine.

Tools that collect MPI traces have one these two drawbacks: They do not produce
accurate enough, fine grained traces, or they distort the application behavior and run
time. Tools that generate detailed traces influence the run time, and sometimes the be-
havior, of the application under measurement, because the amount of data collected
is large and requires time to send to storage [1]. The timestamps in the trace data are
influenced as well. Tools that are less intrusive, collect less, or less accurate, informa-
tion [2,3,4]. We propose a method to solve both of these problems.

Some users of trace data are interested in the message data itself. For example, a
trace driven simulator that simulates one node of a parallel application needs to feed
the process on that node valid data. Otherwise the process might not behave in the
same way as it would outside the simulator, when it is running as part of a parallel
application. Collecting the application data of every MPI message during an application
run generates enormous trace files and greatly influences the timing of an application.

This extended abstract describes a tool named Seshat! [5] which we have extended
to allow tracing of MPI applications. Seshat is an execution-driven network simulator
with a feedback channel into the application that it uses to update the virtual time the
application is running in. It is written as a library that is linked with an MPI application.
No instrumentation of the application code is necessary; relinking it with Seshat is
enough. Seshat makes use of the profiling interface that is part of the MPI standard
(PMPI). With hooks into most of the MPI calls, Seshat is able to initialize itself, collect
information about the running application, and adjust the application’s virtual time-
frame.

The application runs as before, but on an additional node runs the Seshat network
simulator. All MPI messages are sent and received as before, but they also generate
events that are sent to the simulator. The simulator calculates the time this message
was supposed to spend in the simulated network and informs the receiver how much
virtual time has elapsed since the message was sent. The receiver uses that information
to update its local virtual clock. In effect, we can simulate a different network than the
one we are running on, and use Lamport’s time synchronization mechanism [6] to keep
the application unaware of the wall-clock time.

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy under contract DE-AC04-94AL85000.
! Seshat was the Egyptian goddess of measurement and recording.



This independence of the time system the application runs in, plus the knowledge
about every single message of the application under test, allows the network simulator
to generate MPI traces. For proof of concept we built a prototype that writes a 90-byte
ASCII text line to a file for every message event that arrives at the network simulator.
Writing this data slows down the simulator when measured in wall-clock time. How-
ever, the virtual time-frame the application is running in, has not changed. We have
conducted several experiments to test this hypothesis.

We ran experiments on Sandia’s Cray XT3™ Red Storm machine. It was running
version 1.5.39 of the Cray system software. The performance characteristics of that
software release are also the ones Seshat simulates. We used the NAS parallel bench-
marks version 3.2.1 to verify our claims. These benchmarks are simple compared to
real applications. However, we are only interested in a proof of concept. Any code that
sends and receives a large number of MPI messages will do. In some tests we write so
much information that we slow down the benchmark so it takes several hours of wall-
clock time to complete. Yet, it reports the same few seconds or minutes of (virtual) run
time as it would when run natively.

When tracing is enabled, the LU, class A benchmark reports (virtual) times that
are within 6% of what it reports when run in native mode. (In most cases within 2%.)
The wall-clock time, however, is 2,600 times higher than the 64-node native run. This
could be lowered by making the Seshat network simulator parallel and have it write
to a high-performance file system. The fact that this simple experiment, writing to an
NFS-mount file system from a single simulator node, does not change the time the LU
benchmark reports, shows that our approach works. It will let us collect huge traces that
take a long time to write to stable storage, without changing the time-related behavior
of the application under test.

Unfortunately, there is is currently a bug in Seshat that prevents it from performing
as well as LU for some of the other NAS parallel benchmarks. The CG benchmark,
for example, reports widely different times when attached to Seshat, then when it runs
natively. We know this is a Seshat virtual time bug, and is not due to tracing. Although
the virtual time reported when CG runs under Seshat is wrong, it does not change when
we enable tracing. That means our mechanism for collecting large traces without influ-
encing the application works. We are investigating the problem in Seshat’s virtual time
routines and will fix it.

1. Chung, L.H., Walkup, R.E., Wen, H.F.,, You, H.: MPI performance analysis tool on Blue
Gene/L. In: Proc. [EEE/ACM SuperComputing, Tampa, FL. (November 2006)

2. Vetter, J.S., Yoo, A.: An empirical performance evaluation of scalable scientific applications.
In: Supercomputing *02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing,
Los Alamitos, CA, USA, IEEE Computer Society Press (2002)

3. Noeth, M., Mueller, F., Schulz, M., de Supinski, B.R.: Scalable compression and replay of
communication traces in massively parallel environments. In: Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS). (2007)

4. Kniipfer, A., Nagel, W.E.: Compressible memory data structures for event-based trace analy-
sis. Future Generation Computer System 22(3) (2006) 359-368

5. Riesen, R.: A hybrid MPI simulator. In: IEEE International Conference on Cluster Computing
(CLUSTER’06). (2006)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21(7) (1978) 558-565



