
Advanced Shortest Paths Algorithms on a Massively-Multithreaded Architecture

Joseph R. Crobak1, Jonathan W. Berry2, Kamesh Madduri3, and David A. Bader3

1Rutgers University 2Sandia National Laboratories
Dept. of Computer Science Albuquerque, NM USA
Piscataway, NJ 08854 USA jberry@sandia.gov

crobakj@cs.rutgers.edu

3Georgia Institute of Technology
College of Computing

Atlanta, GA 30332 USA
{kamesh,bader}@cc.gatech.edu

Abstract

We present a study of multithreaded implementations of
Thorup’s algorithm for solving the Single Source Shortest
Path (SSSP) problem for undirected graphs. Our implemen-
tations leverage the fledgling MultiThreaded Graph Library
(MTGL) to perform operations such as finding connected
components and extracting induced subgraphs. To achieve
good parallel performance from this algorithm, we devi-
ate from several theoretically optimal algorithmic steps. In
this paper, we present simplifications that perform better in
practice, and we describe details of the multithreaded im-
plementation that were necessary for scalability.

We study synthetic graphs that model unstructured net-
works, such as social networks and economic transaction
networks. Most of the recent progress in shortest path algo-
rithms relies on structure that these networks do not have.
In this work, we take a step back and explore the synergy be-
tween an elegant theoretical algorithm and an elegant com-
puter architecture. Finally, we conclude with a prediction
that this work will become relevant to shortest path compu-
tation on structured networks.

1. Introduction

Thorup’s algorithm [15] solves the SSSP problem for
undirected graphs with positive integer weights in linear
time. To accomplish this, Thorup’s algorithm encapsulates

1-4244-0910-1/07/$20.00 c©2007 IEEE.

information about the input graph in a data structure called
the Component Hierarchy (CH). Based upon information
in the CH, Thorup’s algorithm identifies vertices that can
be settled in arbitrary order. This strategy is well suited to
a shared-memory environment since the component hierar-
chy can be constructed only once, then shared by multiple
concurrent SSSP computations.

Thorup’s SSSP algorithm and the data structures that
it uses are complex. The algorithm has been generalized
to run on directed graphs in O(n + m log w) time [8]
(where w is word-length in bits) and in the pointer-addition
model of computation in O(mα(m,n) + n log log r) time
[13] (where α(m,n) is Tarjan’s inverse-Ackermann func-
tion and r is the ratio of the maximum-to-minimum edge
length).

In this paper, we perform an experimental study of Tho-
rup’s original algorithm. In order to achieve good perfor-
mance, our implementation uses simple data structures and
deviates from some theoretically optimal algorithmic strate-
gies. Thorup’s SSSP algorithm is complex, and we direct
the reader to his original paper for a complete explanation.

In the following section, we summarize related work and
describe in detail the Component Hierarchy and Thorup’s
algorithm. Next, we discuss the details of our multithreaded
implementation of Thorup’s algorithm and detail the exper-
imental setup. Finally, we present experimental results and
plans for future work.

2. Background and Related Work

The Cray MTA-2 and its successor, the XMT [4], are
massively multithreaded machines that provide elaborate

1

SAND2007-4395C

hardware support for latency tolerance, as opposed to la-
tency mitigation. Specifically, a large amount of chip space
is devoted to supporting many thread contexts in hardware
rather than providing cache memory and its associated com-
plexity. This architecture is ideal for graph algorithms, as
they tend to be dominated by latency and to benefit little
from cache.

We are interested in leveraging such architectures to
solve large shortest paths problems of various types. Mad-
duri, et al. [11] demonstrate that for certain inputs, delta-
stepping [12], a parallel Dijkstra variant, can achieve rel-
ative speedups of roughly 30 in 40-processor runs on the
MTA-2. This performance is achieved while finding single-
source shortest paths on an unstructured graph of roughly
one billion edges in roughly 10 seconds. However, their
study showed that there is not enough parallelism in smaller
unstructured instances to keep the MTA-2 busy. In particu-
lar, similar instances of roughly one million edges yielded
relative speedups of only about 3 on 40 processors of the
MTA-2. Furthermore, structured instances with large diam-
eter, such as road networks, prove to be very difficult for
parallel delta stepping regardless of instance size.

Finding shortest paths in these structured road network
instances has become an active research area recently [1, 9].
When geographical information is available, precomputa-
tions to identify “transit nodes” [1] make subsequent s-t
shortest path queries extremely fast. However, depending
on the parameters of the algorithms, serial precomputation
times range from 1 to 11 hours on modern 3Ghz worksta-
tions. We know of no work to parallelize these precompu-
tations.

Although we do not explicitly address that challenge in
this paper, we do note that the precomputations tend to
consist of Dijkstra-like searches through hierarchical data.
These serial searches could be batched trivially into paral-
lel runs, but we conjecture that this process could be accel-
erated even further by the basic idea of allowing multiple
searches to share a common component hierarchy. In this
paper, we explore the utility of this basic idea.

2.1. The Component Hierarchy

The Component Hierarchy (CH) is a tree structure that
encapsulates information about a graph G. The CH of
an undirected graph with positive edge weights can be
computed directly, but preprocessing is needed if G con-
tains zero-weight edges. Each CH-node represents a sub-
graph of G called a component, which is identified by a
vertex v and a level i. Component(v,i) is the subgraph
of G composed of vertex v, the set S of vertices reach-
able from v when traversing edges with weight < 2i,
and all edges adjacent to {v} ∪ S of weight less than 2i.
Note that if w ∈Component(v,i), then Component(v,i) =

v w

5
5
5

5

5
5

10 Comp(v,3) Comp(w,3)

Comp(v,4)

Figure 1. An example component hierarchy.
Component(v,4), the root of this hierarchy, rep-
resents the entire graph.

Component(w,i).
The root CH-node of the CH is a component containing

the entire graph, and each leaf represents a singleton ver-
tices. The children of Component(v,i) in the CH are com-
ponents representing the connected components formed
when removing all the edges with weight > 2i−1 from
Component(v,i). See Figure 1 for an example CH.

2.2. Thorup’s SSSP Algorithm

Given an undirected graph G = (V,E), a source vertex
s ∈ V , and a length function ` : E → Z+, the Single
Source Shortest Path (SSSP) problem is to find δ(v) for v ∈
V \s. The value δ(v) is the length of the shortest path from
s to v in G. By convention, δ(v) = ∞ if v is unreachable
from s.

Most shortest path problems maintain a tentative dis-
tance value, d(v), for each v ∈ V . This value is updated by
relaxing the edges out of a vertex v while visiting v. Relax-
ing an edge e = (u, v) sets d(v) = min(d(v), d(u) + `(e)).
Dijkstra [6] noted in his famous paper that the problem can
be solved by visiting vertices in nondecreasing order of their
d-values. Dijkstra’s algorithm maintains three sets of ver-
tices: unreached, queued, and settled. A vertex v is settled
when d(v) = δ(v) (initially only s is settled), is queued
when d(v) < ∞, and is unreached when a path to v has
not yet been found (d(v) = ∞). Dijkstra’s algorithm re-
peatedly selects vertex v such that d(v) is minimum for all
queued vertices and visits v.

Thorup’s algorithm uses the CH to identify vertices that
can be visited in arbitrary order (d(v) = δ(v)). His major
insight is presented in the following Lemma.

Lemma 1 (From Thorup [15]). Suppose the vertex set V
divides into disjoint subsets V1, . . . , Vk and that all edges
between subsets have weight at least ∆. Let S be the set of
settled vertices. Suppose for some i such that v ∈ Vi\S, that
d(v) = min{d(x)|x ∈ Vi\S} ≤ min{d(x)|x ∈ V \S}+δ.
Then d(v) = δ(v) (see Figure 2).

...

V1 V2
≥Δ ≥Δ

≥Δ

Vk

Figure 2. The vertex set V divided into k sub-
sets.

Based upon this Lemma, Thorup’s algorithm identi-
fies vertices that can be visited in arbitrary order. Let
α = log2 ∆. Component V buckets each of it’s children
V1 . . . Vk according to min{d(x)|x ∈ Vi\S} � α. Note
that (min{d(x)|x ∈ Vi\S} � α) ≤ (min{d(x)|x ∈
V \S} � α) implies that (min{d(x)|x ∈ Vi\S}) ≤
(min{d(x)|x ∈ V \S} + ∆). Consider bucket B[j] such
that j is the smallest index of a non-empty bucket. If Vi ∈
B[j] then min{d(x)|x ∈ Vi\S} � α = min{d(x)|x ∈
V \S} � α. This implies that min{d(x)|x ∈ Vi\S} ≤
min{d(x)|x ∈ V \S} + ∆. Thus, each v ∈ Vi\S minimiz-
ing D(v) can be visited by Lemma 2.2.

This idea can be applied recursively for each component
in the CH. Each component(v,i) buckets each child Vj based
upon min{d(x)|x ∈ Vj\S}. Beginning at the root, Tho-
rup’s algorithm visits its children recursively, starting with
those children in the bucket with the smallest index. When
a leaf component l is reached, the vertex v represented by
l is visited (all of its outgoing edges are relaxed). Once a
bucket is empty, the components in the next highest bucket
are visited and so on. We direct the reader to Thorup [15]
for details about correctness and analysis.

3. Implementation Details

Before computing the shortest path, Thorup’s algorithm
first constructs the Component Hierarchy. We developed a
parallel algorithm to accomplish this. For each component
c in the Component Hierarchy, Thorup’s algorithm main-
tains minD(c) = min(d(x)|x ∈ c\S). Additionally, c must
bucket each child ci according to the value of the minD(ci).
When visiting c, children in the bucket with smallest index
are visited recursively and in parallel.

Our algorithm to generate the Component Hierarchy is
described in Section 3.1. The implementation strategies
for maintaining minD-values and proper bucketing are de-
scribed in section 3.2. Finally, our strategies for visiting
components in parallel are described in Section 3.3.

Input: G(V,E), length function ` : E → Z+

Output: CH(G), the Component Hierarchy of G

foreach v ∈ V do
Create leaf CH-node n and set component(v) to n

G′ ← G
for i = 1 to dlog Ce do

Remove edges of weight ≥ 2i from G′

Find the connected components of G′

Create a new graph G∗

foreach connected component c of G′ do
Create a vertex x in G∗

Create new CH-node n for x
component(x)← n
foreach v ∈ c do

rep(v)← x
parent(component(v))← n

foreach edge (u, v) ∈ G do
Create an edge (rep(u),rep(v)) in G∗

G′ ← G∗

Algorithm 1: Generate Component Hierarchy

3.1. Generating the Component Hierarchy

Thorup [15] presents a linear-time algorithm for con-
structing the component hierarchy from the minimum span-
ning tree. Rather than using this approach, we build the
CH naively in dlog Ce phases, where C is the length of the
largest edge. Our algorithm is presented in Algorithm 1.

Constructing the minimum spanning tree is pivotal in
Thorup’s analysis. However, we build the CH from the
original graph because this is faster in practice than first
constructing the MST and then constructing the CH from
it. This decision creates extra work, but it does not greatly
affect parallel performance because of the data structures
we use, which are described in Section 3.2.

Our implementation relies on repeated calls of a con-
nected components algorithm, and we use the “bully algo-
rithm” for connected components available in the Multi-
Threaded Graph Library (MTGL) [2]. This algorithm
avoids hot spots inherent in the Shiloach-Vishkin algo-
rithm [14] and demonstrates near-perfect scaling through 40
MTA-2 processors on the unstructured instances we study.

3.2. Run-time Data Structures

We define minD(c) for component c as min(d(x)|x ∈
c\S). The value of minD(c) can change when the d(v) de-
creases for vertex v ∈ c, or it can change when a vertex
v ∈ c is visited (added to S). Changes in a component’s

minD-value might also affect ancestor component’s in the
CH. Our implementation updates minD values by propagat-
ing values from leaves towards the root. Our implementa-
tion must lock the value of minD during an update since
multiple vertices are visited in parallel. Locking on minD
does not create contention between threads because minD
values are not propagated very far up the CH in practice.

Conceptually, each component c at level i has an array
of buckets. Each child ck of c is in the bucket indexed
minD(ck) � i. Buckets are bad data structures for a par-
allel machine because they do not support simultaneous in-
sertions. Rather that explicitly storing an array of buckets,
each component c stores index(c), which is c’s index into
its parents buckets. Child ck of component c is in bucket j
if index(ck) = j. Thus, inserting a component into a bucket
is accomplished by modifying index(c). Inserting multiple
components into buckets and finding the children in a given
bucket can be done in parallel.

3.3. Traversing the Component Hierarchy
in parallel

The Component Hierarchy is an irregular tree, in which
some nodes have several thousand children and others only
two. Additionally, it is impossible to know how much work
must be done in a subtree because as few as one vertex
might be visited during the traversal of a subtree. These two
facts make it difficult to efficiently traverse the CH in paral-
lel. To make traversal of the tree efficient, we have split the
process of recursively visiting the children of a component
into a two step process. First, we build up a list of compo-
nents to visit. Second, we recursively visit these nodes.

Throughout execution, Thorup’s algorithm maintains a
current bucket for each component (in accordance with
Lemma 2.2). All of those children (virtually) in the cur-
rent bucket compose the list of children to be visited, called
the toVisit set. To build this list, we look at all of node n’s
children and add each child that is (virtually) in the cur-
rent bucket to an array. The MTA supports automatic paral-
lelization of such a loop with the reduction mechanism. On
the MTA, code to accomplish this is shown in Figure 3.

Executing a parallel loop has two major expenses. First,
the runtime system must setup for the loop. In the case of a
reduction, the runtime system must fork threads and divides
the work across processors. Second, the body of the loop
is executed and the threads are abandoned. If the number
of iterations is large enough, then the second expense far
outweighs the first. Yet, in the case of the CH, each node can
have between two and several hundred thousand children.
In the former case, the time spent setting up for the loop far
outweighs the time spent executing the loop body. Since the
toVisit set must be built several times for each node in the
CH (and there are O(n) nodes in the CH), we designed a

int index=0;
#pragma mta assert nodep
for (int i=0; i<numChildren; i++) {
CHNode *c = children_store[i];
if (bucketOf[c->id] == thisBucket) {
toVisit[index++] = child->id;

}
}

Figure 3. Parallel code to populate the toVisit
set with children in the current bucket.

more efficient strategy for building the toVisit set.
Based upon the number of iterations, we either perform

this loop on all processors, a single processor, or in serial.
That is, if numChildren > multi par threshold then we per-
form the loop in parallel on all processors. Otherwise, if
numChildren > single par threshold then we perform the
loop in parallel on a single processor. Otherwise, the loop
is performed in serial. We determined the thresholds exper-
imentally by simulating the toVisit computation. In Section
5.4, we present a comparison of the naive approach and our
approach.

4. Experimental Setup

4.1. Platform

The Cray MTA-2 is a massively multithreaded super-
computer with slow, 220Mhz processors and a fast, 220Mhz
network. Each processor has 128 hardware threads, and the
network is capable of processing a memory reference from
every processor at every cycle. The run-time system au-
tomatically saturates the processors with as many threads
are as available. We ran our experiments on a 40 processor
MTA-2, the largest one ever built. This machine has 160Gb
of RAM, of which 145Gb are usable. The MTA-2 has sup-
port for primitive locking operations, as well as many other
interesting features. An overview of the features is beyond
the scope of this discussion, but is available as Appendix A
of [10].

In addition to the MTA-2, our implementation compiles
on sequential processors without modification. We used a
Linux workstation to evaluate the sequential performance of
our Thorup implementation. Our results were generated on
a 3.4GHz Pentium 4 with 1MB of cache and 1GB of RAM.
We used the Gnu Compiler Collection, version 3.4.4.

4.2. Problem Instances

We evaluate the parallel performance on two graph fam-
ilies that represent unstructured data. The two families are

among those defined in the 9th DIMACS Implementation
Challenge [5]:

• Random graphs: These are generated by first construct-
ing a cycle, and then adding m − n edges to the graph
at random. The generator may produce parallel edges as
well as self-loops.

• Scale-free graphs (RMAT): We use the R-MAT graph
mode [3] to generate Scalefree instances. This algorithm
recursively fills in an adjacency matrix in such a way
that the distribution of vertex degrees obeys an inverse
power law.

For each of these graph classes, we fix the number of undi-
rected edges, m by m = 4n. In our experimental design,
we vary two factors: C, the maximum edge weight, and the
weight distribution. The latter is either uniform in [1, ..., C]
(UWD) or poly-logarithmic (PWD). The poly-logarithmic
distribution generates integer weights of the form 2i, where
i is chosen uniformly over the distribution [1, log C].

In the following figures and tables, we name data sets
with the convention: <class>-<dist>-<n>-<C>.

4.3. Methodology

We first explore the sequential performance of the Tho-
rup code on a Linux workstation. We compare this to the se-
rial performance of the “DIMACS reference solver,” an im-
plementation of Goldberg’s multilevel bucket shortest path
algorithm, which has an expected running time of O(n) on
random graphs with uniform weight distributions [7]. We
compare these two implementations to establish that our im-
plementation is portable and that it does not perform much
extra work. It is reasonable to compare these implemen-
tations because they operate in the same environment, use
the same compiler, and use the similar graph representa-
tion. Because these implementations are part of different
packages, the only graph class we are able to compare is
Random-UWD.

We collected data about many different aspects of the
Component Hierarchy generation. Specifically, we mea-
sured number of components, average number of children,
memory usage, and instance size. These numbers give a
platform independent view of the structure of the graph as
represented by the Component Hierarchy.

On the MTA-2, we first explore the relative speedup of
our multithreaded implementation of Component Hierarchy
construction and Thorup’s algorithm by varying the number
of processors and holding the other factors constant. We
also show the effectiveness of our strategy for building the
toVisit set. Specifically, we compare the theoretically opti-
mal approach to our approach of selecting from three loops
with different levels of parallelism. Our time measurements
for Thorup’s algorithm are an average of 10 SSSP runs.

Family Thorup DIMACS
Rand-UWD-220-220 4.31s 1.66s
Rand-UWD-220-22 2.66s 1.24s

Table 1. Thorup sequential performance ver-
sus the DIMACS reference solver.

Family Comp. Children Instance
Rand-UWD-224-224 20.79 5.18 4.01GB
Rand-UWD-224-22 17.24 37.02 3.49GB
Rand-PWD-224-224 17.25 36.63 3.20GB
RMAT-UWD-224-224 19.98 6.23 3.83GB
RMAT-UWD-224-22 17.58 21.88 3.54GB
RMAT-PWD-224-224 17.66 19.92 3.29GB

Table 2. Statistics about the CH. “Comp” is
total components in the CH (millions). “Chil-
dren” is average number of children per com-
ponent. “Instance” is memory required for a
single instance.

Conversely, we only measure a single run of the Compo-
nent Hierarchy construction.

After verifying that our implementation scales well, we
compare it to the multithreaded delta stepping implementa-
tion of [11]. Finding our implementation to lag behind, we
explore the idea of allowing many SSSP computations to
share a common component hierarchy and its performance
compared to a sequence of parallel (but single-source) runs
of delta stepping.

5. Results and Analysis

5.1. Sequential Results

We present the performance results of our implementa-
tion of Thorup’s algorithm on two graph families: Random-
UWD-220-220 and Random-UWD-220-22. Our results are
presented in Table 1. In addition to the reported time, Tho-
rup requires a preprocessing step that takes 7.00s for both
graph families. The results show that there is a large per-
formance hit for generating the Component Hierarchy, but
once generated the execution time of Thorup’s algorithm is
within 2-4x of the DIMACS reference solver. Our code is
not optimized for serial computation, especially the code to
generate the Component Hierarchy. Regardless, our Thorup
computation is reasonably close to the time of the DIMACS
reference solver.

 10

 100

 1 10

T
im

e
in

 S
ec

on
ds

Number of MTA Processors

Component Hierarchy Construction
"ch-rand-uwd-2^25-2^25"
"ch-rand-pwd-2^25-2^25"

"ch-rand-uwd-2^24-2^2"
"ch-rmat-uwd-2^26-2^26"
"ch-rmat-pwd-2^25-2^25"

"ch-rmat-uwd-2^26-2^2"

 10

 100

 1 10

T
im

e
in

 S
ec

on
ds

Number of MTA Processors

Thorup’s Algorithm
"th-rand-uwd-2^25-2^25"
"th-rand-pwd-2^25-2^25"

"th-rand-uwd-2^24-2^2"
"th-rmat-uwd-2^26-2^26"
"th-rmat-pwd-2^25-2^25"
"th-rmat-uwd-2^26-2^2"

Figure 4. Scaling of Thorup’s algorithm on
the MTA-2.

5.2. Component Hierarchy Analysis

Several statistics of the CH across different graph fami-
lies are shown in Table 2. All graphs have about the same
number of vertices and edges and thus require about the
same amount of memory– namely 5.76GB. It is more mem-
ory efficient to allocate a new instance of the CH than it is
to create a copy of the entire graph. Thus, multiple Tho-
rup queries using a shared CH is more efficient than several
∆-Stepping queries each with a separate copy of the graph.

The most interesting categories in Table 2 are the number
of components and the average number of children. Graphs
favoring small edge weights (C = 22 and PWD) have more
children on average and a fewer number of components. In
Section 5.3, we find that graphs favoring small edge weights
have faster running times.

5.3. Parallel Performance

We present the parallel performance of constructing the
Component Hierarchy and computing SSSP queries in de-

Graph Family CH CH Speedup
Rand-UWD-225-225 23.85s 15.89
Rand-PWD-225-225 23.41s 18.27
Rand-UWD-224-22 13.87s 16.04
RMAT-UWD-226-226 44.33s 17.19
RMAT-PWD-225-225 23.58s 15.83
RMAT-UWD-226-22 18.67s 18.45

Table 3. Running time and speedup for gen-
erating the CH on 40 processors.

Graph Family Thorup Thorup Speedup
Rand-UWD-225-225 7.53s 60.51
Rand-PWD-225-225 7.54s 63.09
Rand-UWD-224-22 5.67s 48.45
RMAT-UWD-226-226 15.86s 85.55
RMAT-PWD-225-225 8.16s 65.42
RMAT-UWD-226-22 7.39s 64.36

Table 4. Running time and speedup for Tho-
rup’s algorithm on 40 processors.

tail. We ran Thorup’s algorithm on graph instances from the
Random and RMAT graph families, with uniform and poly-
log weight distributions, and with small and large maximum
edge weights. We define the speedup on p processors of the
MTA-2 as the ratio of the execution time on one proces-
sor to the execution time on p processors. Note that since
the MTA-2 is thread-centric, single processor runs are also
parallel. In each instance, we computed the speedup based
upon the largest graph that fits into the RAM of the MTA-2.

Both the Component Hierarchy construction and SSSP
computations scale well on the instances studied (see Fig-
ure 4). Running times and speedups on 40 processors are
detailed in Tables 3 and 4. For a RMAT graph with 226 ver-
tices, 228 undirected edges, and edge weights in the range
[1, 4], Thorup takes 7.39 seconds after 18.67 seconds of pre-
processing on 40 processors. With the same number of ver-
tices and edges, but edge weights in the range [1, 226], Tho-
rup takes 15.86 seconds. On random graphs, we find that
graphs with PWD and UWD distributions have nearly iden-
tical running times on 40 processors (7.53s for UWD and
7.54s for PWD).

For all graph families, we attain a relative speedup from
one to forty processors that is greater than linear. We at-
tribute this contradiction to an anomaly present when run-
ning Thorup’s algorithm on a single processor. Namely, we
see speedup of between three and seven times when going
from one to two processors. This is unexpected, since the
optimal speedup should be twice that of one processor. On a
single processor, loops with a large amount of work only re-
ceive a single thread of execution in some cases because the

Family ∆-Stepping Thorup CH
Rand-UWD-225-225 4.95s 7.53s 23.85s
Rand-PWD-225-225 4.95s 7.54s 23.41s
Rand-UWD-224-22 2.34s 5.67s 13.87s
RMAT-UWD-226-226 5.74s 15.86s 44.33s
RMAT-PWD-225-225 5.37s 8.16s 23.58s
RMAT-UWD-226-22 4.66s 7.39s 18.67s

Table 5. Comparison of Delta-Stepping and
Thorup’s algorithm on 40 processors. “CH”
is the time taken to construct the CH.

Family Thorup A Thorup B
RMAT-UWD-226-226 28.43s 15.86s
RMAT-PWD-225-225 14.92s 8.16s
RMAT-UWD-225-22 9.87s 7.57s
Rand-UWD-225-225 13.29s 7.53s
Rand-PWD-225-225 13.31s 7.54s
Rand-UWD-224-22 4.33s 5.67s

Table 6. Comparison of naive strategy (Tho-
rup A) to our strategy (Thorup B) for building
toVisit set on 40 processors.

remainder of the threads are occupied visiting other com-
ponents. This situation does not arise for more than two
processors on the inputs we tested.

Madduri et al. [11] present findings for shortest path
computations using Delta-Stepping on directed graphs. We
have used this graph kernel to conduct Delta-Stepping tests
for undirected graphs so that we can directly compare Delta-
Stepping and Thorup. The results are summarized in Table
5. Delta-Stepping performs better in all of the single source
runs presented. Yet, in Section 5.5, we show that Thorup’s
algorithm can processor simultaneous queries more quickly
than Delta-Stepping.

5.4. Selective parallelization

In Section 3.3, we showed our strategy for building the
toVisit set. This task is executed repeatedly for each compo-
nent in the hierarchy. As a result, the small amount of time
that is saved by selectively parallelizing this loop translates
to an impressive performance gain. As seen in Table 6, the
improvement is nearly two-fold for most graph instances.

In the current programming environment, the program-
mer can only control if a loop executes on all processors,
on a single processor, or in serial. We conjecture that better
control of the number of processors for a loop would lead
to a further speedup in our implementation.

5.5. Simultaneous SSSP runs

Figure 5 presents results of simultaneous Thorup SSSP
computations that share a single Component Hierarchy. We
ran simultaneous queries on random graphs with a uniform
weight distribution. When computing for a modest num-
ber of sources simultaneously, our Thorup implementation
outpaces the baseline delta-stepping computation.

We note that Delta-Stepping stops scaling with more
than four processors for small graphs. Thus, Delta-Stepping
could run ten simultaneous four processor runs to process
the graph in parallel. Preliminary tests suggest that this ap-
proach might beat Thorup, but this is yet to be proven.

6. Conclusion

We have presented a multithreaded implementation of
Thorup’s algorithm for undirected graphs. Thorup’s algo-
rithm is naturally suited for multithreaded machines since
many computations can share a data structure within the
same process. Our implementation uses functionality from
the MTGL [2] and scales well from 2 to 40 processors on
the MTA-2. Although our implementation does not beat
the existing Delta-Stepping [11] implementation for a single
source, it does beat Delta-Stepping for simultaneous runs on
40 processors. These runs must be computed in sequence
with Delta-Stepping.

During our implementation, we created strategies for
traversing the Component Hierarchy, an irregular tree struc-
ture. These strategies include selectively parallelizing a
loop with an irregular number of iterations. Performing this
optimization translated to a large speedup in practice. Yet,
the granularity of this optimization was severely limited by
the programming constructs of the MTA-2. We were only
able to specify if the code operated on a single processor or
on all processors. In the future, we would like to see the
compiler or the runtime system automatically choose the
number of processors for loops like these. In the new Cray
XMT [4], we foresee this will be an important optimization
since the number of processors is potentially much larger.

We would like to expand our implementation of Tho-
rup’s algorithm to compute shortest paths on road networks.
We hope to overcome the limitation of our current imple-
mentation, which exhibits trapping behavior that severely
limits performance on road networks. After this, the
Component Hierarchy approach might potential contributed
speedup of the precomputations associated with cutting-
edge road network shortest path computations based-upon
transit nodes [1, 9]. Massively multithreaded architectures
should be contributing to this research, and this is the most
promising avenue we see for that.

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40

T
im

e
in

 S
ec

on
ds

Number of Sources

Simultaneous 40 Processor Thorup Runs from Multiple Sources

"baseline-thorup-rand-uwd-2^20-2^20"
"baseline-deltastep-rand-uwd-2^20-2^20"

"simul-thorup-rand-uwd-2^20-2^20"

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30

T
im

e
in

 S
ec

on
ds

Number of Sources

Simultaneous 40 Processor Thorup Runs from Multiple Sources

"baseline-thorup-rand-uwd-2^23-2^23"
"baseline-deltastep-rand-uwd-2^23-2^23"

"simul-thorup-rand-uwd-2^23-2^23"

Figure 5. Simultaneous Thorup SSSP runs
from multiple sources using a shared CH.

7. Acknowledgments

This work was supported in part by NSF Grants CA-
REER CCF-0611589, NSF DBI-0420513, ITR EF/BIO 03-
31654, and DARPA Contract NBCH30390004. Sandia is a
multipurpose laboratory operated by Sandia Corporation, a
Lockheed-Martin Company, for the United States Depart-
ment of Energy under contract DE-AC04-94AL85000. We
acknowledge the algorithmic inputs from Bruce Hendrick-
son of Sandia National Laboratories.

References

[1] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes.
In transit to constant time shortest-path queries in road net-
works. In Workshop on Algorithm Engineering and Experi-
ments (ALENEX), New Orleans, LA, January 2007.

[2] J. Berry, B. Hendrickson, S. Kahan, and P. Konecny. Graph
software development and performance on the MTA-2 and
Eldorado. In Proc. Cray User Group meeting (CUG 2006),
Lugano, Switzerland, May 2006. CUG Proceedings.

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recur-
sive model for graph mining. In Proc. 4th SIAM Intl. Conf.
on Data Mining (SDM), Orlando, FL, April 2004. SIAM.

[4] Cray, Inc. The XMT platform. http://www.cray.
com/products/xmt/, 2006.

[5] C. Demetrescu, A. Goldberg, and D. Johnson. 9th DIMACS
implementation challenge – Shortest Paths. http://www.
dis.uniroma1.it/∼challenge9/, 2006.

[6] E. Dijkstra. A note on two problems in connection with
graphs. Numerical Mathematics, 1(4):269–271, 1959.

[7] A. V. Goldberg. A simple shortest path algorithm with linear
average time. Lecture Notes in Computer Science, 2161,
2001.

[8] T. Hagerup. Improved shortest paths on the word ram. In
ICALP ’00: Proceedings of the 27th International Collo-
quium on Automata, Languages and Programming, pages
61–72, London, UK, 2000. Springer-Verlag.

[9] S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wag-
ner. Computing many-to-many shortest paths using highway
hierarchies. In Workshop on Algorithm Engineering and Ex-
periments (ALENEX), New Orleans, LA, January 2007.

[10] K. Madduri, D. Bader, J. Berry, and J. Crobak. Parallel
shortest path algorithms for solving large-scale instances.
Technical report, Georgia Institute of Technology, Septem-
ber 2006.

[11] K. Madduri, D. Bader, J. Berry, and J. Crobak. An experi-
mental study of a parallel shortest path algorithm for solving
large-scale graph instances. In Workshop on Algorithm En-
gineering and Experiments (ALENEX), New Orleans, LA,
January 2007.

[12] U. Meyer and P. Sanders. Delta-stepping: A parallel single
source shortest path algorithm. In European Symposium on
Algorithms, pages 393–404, 1998.

[13] S. Pettie and V. Ramachandran. Computing shortest paths
with comparisons and additions. In 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’02). SIAM, 6–8
2002.

[14] Y. Shiloach and U. Vishkin. An O(log n) parallel connec-
tivity algorithm. J. Algs., 3(1):57–67, 1982.

[15] M. Thorup. Undirected single-source shortest paths with
positive integer weights in linear time. Journal of the ACM,
46(3):362–394, 1999.

