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The Validation Challenge

e Validation of a computational model :

e Establish "agreement” between predictions and empiri-
cal observations

e Establishing model validity requires " error bars” on computa-
tional predictions

e Disagreement without error bars cannot be used to con-
clude that a particular model is not valid

e Disagreement within the range of uncertainty of the re-
sults can be due to parametric uncertainty
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The Case for Uncertainty Quantification

e UQ is needed for :

e validation of scientific models

e validation of predictive codes

e engineering design optimization

e assessment of confidence in computational predictions

e enabling decision-making strategies based on predictive
models

e assimilation of observational data and model construc-
tion in noisy environments

e multiscale/multiphysics modeling
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Sources of Uncertainty

e model structure
e participating physical processes
e governing equations
e constitutive relations

e model parameters

e transport properties

e thermodynamic properties
e constitutive relations

e rate coefficients

e initial and boundary conditions

® geometry

Focus on parametric UQ
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Elements of a UQ strategy

e Estimation of model /parametric uncertainties based on data

e Deterministic framework
Regresssion analysis, fitting, parameter estimation
e Probabilistic framework

Bayesian inference of uncertain models/parameters

e Forward propagation of uncertainty in computational models

e Deterministic framework
Local Sensitivity analysis (SA); Error propagation
Interval math

e Probabilistic framework — Global SA / stochastic UQ
Sampling based — non-intrusive

Direct — intrusive
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Stochastic Framework

e Laplacian/Bayesian conception of probability

e Probability = degree of knowledge
e Uncertain quantity = random variable
e Contrast with Frequentist framework

e Inference with Bayes theorem

p(ml|d)p(d) = p(d|m)p(m)
A formal framework for

e representation of knowledge

e learning from data

e incorporation of prior knowledge
e construction of uncertain models
e avoidance of overfitting
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Issues with Least Squares (LS) Parameter Estimation

e Choice of optimal number of fit parameters (p)

o X%g = x?/(D — p) decreases with increased p
e Versus Ockham's razor principle in Bayesian analysis

e LS best fit is the Maximum Likelihood Estimate (MLE)
assuming gaussian noise in the data

e LS Estimation of Uncertainty in inferred parameter values
relies on assumed linearity of the model in the parameters

e No general means of handling nuisance parameters

HNN-SNL

CSRIOT7 - 8



Role of Bayes Formula in Parameter Inference

e Bayes Formula:

PN\ y) = p(A\y)p(y) = p(y|A)p(A)

or.
Likelihood Prior
Posterior &(gl
Evidence

e Infer PDF of A rather than the least-squares estimate of A

e Posterior contains all information about A
e including both prior information and data

e Evidence is a normalizing constant — ignore
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The Posterior — towards parametric uncertainties

Parameter \;. marginal probability:
pOul) = [ PN Ak 1A

e Given any sample { A}, the un-normalized posterior probability
can be easily computed

p(Aly) o< p(y|A)p(A)
e Explore the posterior using Markov Chain Monte Carlo (MCMC)

e Can use uninformed priors

e Evaluate marginals from the MCMC statistics
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Construction Allows Exploration of Correlations among Parameters

e Available naturally from the MCMC procedure
e Useful for understanding interplay between data and model
e Needed for subsequent UQ

: p(i07 /70)
Yo
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Spectral Stochastic UQ Formulation — Polynomial Chaos

e An Ly random variable u(x,t,6) can be described by
a Polynomial Chaos (PC) expansion in terms of:

e Hermite polynomials V., k=1,...,00;

e the associated infinite-dimensional Gaussian basis {;(0) }5°;

e spectral mode strengths up(x,t), k=1,..., 00

e Truncated to finite dimension n and order p, the PC expansion
for u is written as

a:t@ Zukwt\lfk 9))

where £(0) = {£1(0), - - 7fn(‘9)}
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Non-intrusive — Sampling-Based — Spectral Projection (NISP) UQ

e Sample parameters using Monte Carlo
e Compute realizations of the model outputs

e Project MC statistics on the spectral mode strengths u.(t)

<<1$’2k>> _ <q112> /uqfk(g)p(g)dg, k=0,....P
k

— Evaluate integrals numerically (MC, quadrature, cubature)

Ug =

e Uncertain model output

u(x,t;0) = Zukxt\ﬂk (0))
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NISP UQ Application: Premixed H,-O, Chemistry at Super-Critical

Water Oxidation (SCWQO) Conditions

e Allow uncertainties in reaction rate constants and thermody-
namic properties, per published experimental data

e Wrap NISP processing around a deterministic reacting flow

code

e Using 8-step simplified SCWO Hydrogen mechanism (McRae)

Reaction A n | E,/R|UF
1. OH + H ~ Hy0 1.620E+14 | 0 | 75 |3.16
2. H, + OH ~ H,O+H 1.024E+08 | 1.6 | 1660 | 1.26
3. H+ Oy — HO, 1.481E+12 (06| O |1.58
4. HOy + HOy «+ H05 + Oy 1.867E+12 0 775 |1.41
5. HbOs + OH < H;O + HO, | 7.829E+12 | 0 | 670 | 1.58
6. HoO, + H < HO; +Hy | 1.686E+12 | 0 | 1890 | 2.00
7. HyO4 —~ OH+ OH | 3.0000E+4+14| 0 |24400 | 3.16
8. OH + HOy < H0 + O, 2.891E+13 | 0 | -250 | 3.16
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Species | 20

H 52.10 | 0.01

OH 93 | 0.2

H,O |-57.80|0.01

HO2 |-32.53 | 0.07

HO, 30 | 0.5
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1D H,-0, SCWO Flame NISP UQ/Chemkin-Premix

OH o(OH)
0.15
0.015 N
Rxns 1,6
0.10
T— 0.010
T @)
O N
> o
0.05 0.005 |+
0.00 0.000
0.050 0.051 0.052 0.053 0.054 0.050 0.051 0.052 0.053 0.054
X (cm) X (cm)

e Fast growth in OH uncertainty in the primary reaction zone
e Constant uncertainty and mean of OH in post-flame region

e Uncertainty in pre-exponential of Rxn.5 (HoOy+0OH=H50+HO,)
has largest contribution to uncertainty in predicted OH
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First-Order Sensitivity Information in a PC Expansion

e Conventional sensitivity
ou ou
OXg  OAI)N

e Sensitivity in a stochastic UQ context

P P
A= MTiE), u=) w6
k=0 k=0

e For Hermite W .

u=u(x,t;\) : S =

S =

k+1) L
ou_ 0u/06 _ STk Dy S

0N ONOE S PNk Ny S

e Extends to multi-D case with independent parameters
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Intrusive Spectral Stochastic UQ Formulation: ODE Example

e Sample ODE with parameter A:
du

dt
e Let \ be uncertain; introduce £ ~ N (0, 1).
Express A and u using PCEs in &:

P P
A= Z )‘kqjka U = Zukqjk
k=0 k=0

e Substitute in ODE and appIy a Galerkin projection on W, (),

du@ ZZApququ, i—0,. ... P

p=0 g=0
= <\Ilp\11q\117;> / <\IJ,?> are known coefficients

= \u

where the C),;; =
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Pseudo-Spectral Implementation

Spectral Product : w = uv

w=uxv = w;= (w);, 1=0,---,P

Psuedo-spectral higher-order polynomial terms :

w=Mv = w=\x*(ux*(uxv))

Division :
u . .

w=— = (vw), =1ug, solve linear equation system for wy
v

df

Arbitrary functions u = f(z) where @ = 3 is a rational function
i

of vt & u :
P X
up(xp) — ug(za) Z/
7=0

b)) P
Z]k d:l?j
1=0

]
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Spectral UQ: Incompressible Flow - Stochastic Projection Method

e (P+1) Galerkin-Projected Momentum equations, ¢ =0, ..., P:

L+ V- (o), = ~Vpy+ ==V - (4l(Vo) + (Vo) ]>q
e Projection: forg=20,..., P :
N Cq + Dy
1

) ~

1V Pg — —A—tv Uyq

v — P
q q _ _qu

At

o P + 1 decoupled Poisson Equation solutions for the pressure
modes.
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Laminar 2D Channel Flow with Uncertain Viscosity

|
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e Incompressible flow
e Gaussian viscosity PDF
— v =)+ 11§

e Streamwise velocity

P
— U = Z ?JZ'\IJZ‘
1=0

—Vp: mean

—v;: i-th order mode
P

— 02 = Zv% <\If%>

1=1

V() V9 V3 o



Spectral UQ Formulation: low M 2D Reacting Flow Equations

dp
9 {pv) ! Ty _ 2
5 TV {pvv), = —Vp =V <u[(Vv)+(Vv> ]—gu(V'v>U>q
aT, (v — 1) dp, 1 /V-(\VT) 1 /e
—4 VT = - — V- VI
i q
1 N
— Da —Zhiwi
pCp i=1 q
a<pmq+v-<va> E— V- (pYiVi), + Da (w;) i=1...,N
ot "q ReSc 1V g g o

e Time Integration:

— Operator-Split reaction-diffusion integration of (P + 1)(N + 1) species and energy eqns

— Stochastic Projection Method integration of (P + 1) momentum equations
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UQ in constant-pressure ignition

N-species, with mass fractions Y;:

dYi _wi N
dt 0
dT’ _wr
dt PCp
with wp = — sz\il w; and w; = 2%:1 Vi R
Example: CH4 + 209 — CO9 + 2H50
Stoichiometric coefficients : v =41,2,1,2}
Reaction rate of progress Ri = [CH4][O9]? A T™heEw/T

e Quantify reaction-rate pre-exponential (A;.) uncertainty with mul-
tiplicative factor Fj. :

A
P (—k < Ak < FkAk) — 0.95
by,
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Large activation energy (F£)) exponentials lead to very fast changes
in species concentrations and temperature

e Methane-air ignition — Global single-step irreversible mechanism
[ |n|t|a| T = 8OOK 3000

e Stoichiometric " E=0-50K
2500 - 2

e p = 1 atm (constant)

2000 i
1500 - B

1000 J J J )

500 L Ll Lone oo Lowe L
10 °10"10%10™ 10° 10° 10" 10% 10° 10°
time (sec)

Mean Temperature (K)
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Increased E; leads to higher peak d7'/dt and higher consequence of
small uncertainties in reaction rate constants

E=20K E=40K
0.040 — — — 15
=3 —— 4"-order WH PC < —— 4"-order WH PC
I5 —— 1000 Samples IS —— 1000 Samples
4(—61 —
< 0030+ : 2
(] ]
a 010 | .
= =
& S
© ©
g 0.020 . 5
o )
o o
> >
g g5 *
S 0.010 - . o
= £
()] (]
) ) &C
0.000 5 = = e 0 ‘ ‘
10 10 10 10 10 0.212 0.214 0.216 0.218
time (sec) time (msec)

o A = A(£), 1-D Wiener-Hermite
e PC UQ captures sampled stochastic behavior at low F.
— with miniscule uncertainty in Az (F' = 1.00002, COV=10"").

e Unphysical effects observed at high activation energy
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Increasing A, COV towards minimally-practical levels leads to failed

time integration

500

400
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200

Temperature Standard Deviation (K)
H
o
o

E=50K

— F=1.00002
—— F=1.00003
— F=1.00004

86.56 86.58
time (msec)

86.60

3000

1000 samples, F=2.0
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2000

Temperature (K)
I

=

a1

(@)

o
I

1000 -

500
0.00

0.05 0.10 0.15 0.20
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e Unrealistic to expect a WH PC expansion in 1D to capture
expected PDFs at realistic reaction-rate parametric uncertainties

e Need increased dimensionality of the PCEs, using multiple ¢'s for
each uncertain parameter, for increased accuracy and stability

HNN-SNL
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UQ in constant-pressure isothermal ignition — H,-O, SCWO system

e Using 1D Wiener-Hermite PC, with order P
e Computations stable for small reaction-rate uncertainty
e SCWO with only Rxn-7 uncertain :

OH, 5"-order, F_7=3.16

2.0e-13

o P =1: stable®

o P =2 failsfor UFy, > 2.55 & i

o P = 3: stable® g

o P =45 fails for UF} > 2.23 § +oe-tal
*(up to empirical U F}, = 3.16) g soei

time (sec)

HNN-SNL CSRIOT7 - 26



Experience with Instabilities and Intrusive PC UQ

e Regions of explosive mode growth
can lead to instabilities.

2.0e-13

e Fast growth of high-order modes, ... .,
and fast drift of the solution *

towards unphysical values S 10e-13- .
e Standard deviation increases |
. . e . . 5.0e-14+~ :
significantly, becoming a sizeable f
fraction of the mean. I
0 . Oe+108'e _05 R s PR RIINNNANK Oe_o I 3 . Oe_05
e Increasing PC order does not help ()

e NB. all with fixed PC dimension

Reagan, Najm, Debusschere, Le Maitre,
Knio, and Ghanem, CTM, 2004
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Causes of instability in Chemical Systems

e Gaussian has infinite support

e Finite probability of negative concentrations

e Cannot satisfy strict positivity
e Result of finite PC order and fixed PC dimension

e Fails in chemical systems
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Model Problem: Bifurcations and Intrusive PC UQ

e Consider a model problem : % = u(u + 10)(1 — u)

e Fixed points: attractive: ©w = —10, 1; repulsive: © = 0
e Initial condition stochastic: U = Z/]j:o UpV;..
e Integrate for ui(t), k =0,..., P

4

® & A N O N A

-10

_12 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6

time

o
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Model Problem: Consequence of Initial PDF tail zero crossing

6.0

4.0

PDF(U)

2.0

e 077 /Uy >=~30% attracts u( towards negative region

U,=0.2,0.3; Yy=0.08

0.8

5.0

0.0

-5.0

-10.0

U,=0.2,0.3; Y=0.08

0.3

0.0

15

e Even for low 077, increasing PC order leads to similar drift

e Similar behavior for Gaussian or Lognormal initial condition

e Similarly with Laguerre polynomial/Gamma distribution basis

HNN-SNL
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Challenges with the use of a Global PC Basis for Intrusive UQ

e Global PC expansion with N-th order polynomial will have N
roots/zero-crossings in general

e Representing a RV with a global PC expansion (over all £)

e with fixed dimensionality and order
e will 'sample’ both positive and negative u-realizations
e irrespective of PDF(u)

e Fails when strict positivity is necessary for stability
® e.g. reaction rate constants, concentrations, temp

e Possible remedies with appropriate filtering strategies

e Eval local low order basis vs. the global high order approach

e Wavelets, Multi-Resolution Analysis

Le Maitre et al., J. Comp. Phys., 197, 28-57, 2004
Le Maitre et al., J. Comp. Phys., 197, 502-531, 2004
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Uncertainty Quantification with Multiwavelets

e An uncertain field quantity u(x,t,0) is expressed using PC

P
u = up(x, )Vk(&,. .. EN)
k=0

e Introduce (; = p(&;): CDF of &;, where (; is on [0,1]

u=g(&,....&N) = [y, CN)

e Represent f(¢) using N-D multiwavelets (Alpert, 1993)

Q
U = Zﬂ)\(x,t) W)\(Cla s 7CN)

A=0

Le Maitre, Ghanem, Knio, and Najm, J. Comp. Phys., 197:28-57 (2004)
Le Maitre, Najm, Ghanem, and Knio, J. Comp. Phys., 197:502-531 (2004)
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Haar-Wavelets

Haar scaling functions

1, 0<y<1
w _ ; =
> (Y) {O otherwise

Scaled Haar functions, scaling factor 4, and sliding factor k,

o (y) = 21260 20y — k)
Haar function (mother wavelet)
1

1 17 0 < y < D9 ‘
V(y) = —¢fo(y)—ﬁ 30,1(9) =< -1 % <y <l

L0, otherwise. ‘
Wavelet family
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Wiener-Haar Construction

The set of ¢;Uk(y) is an orthonormal system

Any function f € L?(]0, 1]) can be arbitrarily well approximated by
the sum of its mean and a finite linear combination of the w;uk(y)

The wavelet set W, (£(0)) = w;i‘jk(p(f)) forms a basis for the

space of L? random processes.

0o 271

X(£(0) = Xo+ > > X0i ZX)\W)\

=0 k=0
Multidimensional {£1,&9, ..., &N T

w=1]w,, (&)
k=1
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Multidimensional Multiwavelet Construction

e Wiener-Haar PC able to represent uncertainty in systems ex-
hibiting bifurcations depending on parameter values

e Poor convergence relative to PC constructions with smooth
global bases on smooth functions

e Use multiwavelet construction (Alpert, 1993) employing higher
order polynomials instead of the Haar-functions

e For efficient multidimensional construction, use

e Block-decomposition of the stochastic space
e A local MW construction on each block employing

Scaled Legendre polynomials on |0, 1]
First level Multiwavelet details

e Adaptive resolution in each dimension on each block
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3

OH Concentration (mole/crsec)

UQ in constant-pressure isothermal ignition — MRA

e Hy-O9 SCWO with only Rxn-7 uncertain

le-12

5e-13

0e+00

HNN-SNL

OH, 2“order MRA, F_7=3.16

Mean +/- T envelope

10

3

OH Concentration (mole/cnsec)

le-12

5e-13

0e+00

(F7 = 3.16)

OH, 2“-order, MRA & WH, F_7=2.08

Mean +/- b envelope .

—— MRA
——- WH
| | |
2 4 6 8 10
time (sec)
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UQ in constant-pressure isothermal ignition — MRA

e Hy-O9 supercritical
water oxidation
model

e Empirically-based
uncertainty in all 7
reactions

e Adaptive refinement
of MW block

decomposition in
each dimension

HNN-SNL
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OH Concentration (mole/crsec)

2.0e-12

1.5e-12

1.0e-12

5.0e-13

0.0e+00

OH, MRA, full F_1-F 7

Mean +/- b envelope

4 6 8 10

time (sec)

Le Maitre, Najm, Pébay, Ghanem, and Knio,
SIAM J. Sci. Comp., 22(2):864-889, 2007
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Conclusions

e Non-intrusive Spectral UQ

e PC-construction enables extraction of sensitivities
e Quadrature and cubature to reduce no. of samples

e Intrusive Spectral UQ in reacting flow

e Global basis OK for weakly non-linear systems

e Potential utility of multiple £'s per uncertain parameter
e Adaptive multiwavelet MRA construction

Accuracy, robustness, and efficiency demonstrated
on a number of model problems

Resolves global PC difficulties

Demonstration in exothermic ignition and flames
In progress
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Prospects

e Cubature methods for efficient evaluation of high dimensional
integrals

e Adaptive general multiwavelet solution of non-linear systems

e Challenges

e Convection
e Limit-cycle and chaotic systems
e Dimensionality

HNN-SNL CSRIO7 - 39



