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The Validation Challenge

• Validation of a computational model :

• Establish ”agreement” between predictions and empiri-
cal observations

• Establishing model validity requires ”error bars” on computa-
tional predictions

• Disagreement without error bars cannot be used to con-
clude that a particular model is not valid

• Disagreement within the range of uncertainty of the re-
sults can be due to parametric uncertainty
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The Case for Uncertainty Quantification

• UQ is needed for :

• validation of scientific models

• validation of predictive codes

• engineering design optimization

• assessment of confidence in computational predictions

• enabling decision-making strategies based on predictive
models

• assimilation of observational data and model construc-
tion in noisy environments

• multiscale/multiphysics modeling
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Sources of Uncertainty

• model structure

• participating physical processes

• governing equations

• constitutive relations

• model parameters

• transport properties

• thermodynamic properties

• constitutive relations

• rate coefficients

• initial and boundary conditions

• geometry

Focus on parametric UQ
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Elements of a UQ strategy

• Estimation of model/parametric uncertainties based on data

• Deterministic framework

• Regresssion analysis, fitting, parameter estimation

• Probabilistic framework

• Bayesian inference of uncertain models/parameters

• Forward propagation of uncertainty in computational models

• Deterministic framework

• Local Sensitivity analysis (SA); Error propagation
• Interval math

• Probabilistic framework – Global SA / stochastic UQ

• Sampling based — non-intrusive
• Direct — intrusive
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Stochastic Framework

• Laplacian/Bayesian conception of probability

• Probability ≡ degree of knowledge

• Uncertain quantity ≡ random variable

• Contrast with Frequentist framework

• Inference with Bayes theorem

p(m|d)p(d) = p(d|m)p(m)

A formal framework for

• representation of knowledge

• learning from data

• incorporation of prior knowledge

• construction of uncertain models

• avoidance of overfitting
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Issues with Least Squares (LS) Parameter Estimation

• Choice of optimal number of fit parameters (p)

• χ2
R = χ2/(D − p) decreases with increased p

• Versus Ockham’s razor principle in Bayesian analysis

• LS best fit is the Maximum Likelihood Estimate (MLE)
assuming gaussian noise in the data

• LS Estimation of Uncertainty in inferred parameter values
relies on assumed linearity of the model in the parameters

• No general means of handling nuisance parameters
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Role of Bayes Formula in Parameter Inference

• Bayes Formula:

p(λ, y) = p(λ|y)p(y) = p(y|λ)p(λ)

or:

p(λ|y)
︸ ︷︷ ︸

Posterior

=

Likelihood
︷ ︸︸ ︷

p(y|λ)

Prior
︷︸︸︷

p(λ)

p(y)
︸︷︷︸

Evidence

• Infer PDF of λ rather than the least-squares estimate of λ

• Posterior contains all information about λ

• including both prior information and data

• Evidence is a normalizing constant – ignore
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The Posterior — towards parametric uncertainties

Parameter λk marginal probability:

p(λk|y) =

∫

p(λ|y) dλ1:k−1dλk+1:M

• Given any sample {λ}, the un-normalized posterior probability
can be easily computed

p(λ|y) ∝ p(y|λ)p(λ)

• Explore the posterior using Markov Chain Monte Carlo (MCMC)

• Can use uninformed priors

• Evaluate marginals from the MCMC statistics
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Construction Allows Exploration of Correlations among Parameters

• Available naturally from the MCMC procedure

• Useful for understanding interplay between data and model

• Needed for subsequent UQ

γo

p(io, γo)

io
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Spectral Stochastic UQ Formulation — Polynomial Chaos

• An L2 random variable u(x, t, θ) can be described by
a Polynomial Chaos (PC) expansion in terms of:

• Hermite polynomials Ψk, k = 1, . . . ,∞;

• the associated infinite-dimensional Gaussian basis {ξi(θ)}∞i=1;

• spectral mode strengths uk(x, t), k = 1, . . . ,∞.

• Truncated to finite dimension n and order p, the PC expansion
for u is written as

u(x, t, θ) ≃
P∑

k=0

uk(x, t)Ψk(ξ(θ))

where ξ(θ) = {ξ1(θ), · · · , ξn(θ)}.
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Non-intrusive – Sampling-Based – Spectral Projection (NISP) UQ

• Sample parameters using Monte Carlo

• Compute realizations of the model outputs

• Project MC statistics on the spectral mode strengths uk(t)

uk =
〈uΨk〉
〈
Ψ2
k

〉 =
1

〈
Ψ2
k

〉

∫

uΨk(ξ)ρ(ξ)dξ, k = 0, . . . , P

– Evaluate integrals numerically (MC, quadrature, cubature)

• Uncertain model output

u(x, t; θ) =

P∑

k=0

uk(x, t)Ψk(ξ(θ))
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NISP UQ Application: Premixed H2-O2 Chemistry at Super-Critical

Water Oxidation (SCWO) Conditions

• Allow uncertainties in reaction rate constants and thermody-
namic properties, per published experimental data

• Wrap NISP processing around a deterministic reacting flow
code

• Using 8-step simplified SCWO Hydrogen mechanism (McRae)

Reaction A n Ea/R UF

1. OH + H ↔ H2O 1.620E+14 0 75 3.16

2. H2 + OH ↔ H2O + H 1.024E+08 1.6 1660 1.26

3. H + O2 ↔ HO2 1.481E+12 0.6 0 1.58

4. HO2 + HO2 ↔ H2O2 + O2 1.867E+12 0 775 1.41

5. H2O2 + OH ↔ H2O + HO2 7.829E+12 0 670 1.58

6. H2O2 + H ↔ HO2 + H2 1.686E+12 0 1890 2.00

7. H2O2 ↔ OH + OH 3.0000E+14 0 24400 3.16

8. OH + HO2 ↔ H2O + O2 2.891E+13 0 -250 3.16

Species µ0 2σ

H 52.10 0.01

OH 9.3 0.2

H2O -57.80 0.01

H2O2 -32.53 0.07

HO2 3.0 0.5
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1D H2-O2 SCWO Flame NISP UQ/Chemkin-Premix
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All 1st−order

• Fast growth in OH uncertainty in the primary reaction zone

• Constant uncertainty and mean of OH in post-flame region

• Uncertainty in pre-exponential of Rxn.5 (H2O2+OH=H2O+HO2)
has largest contribution to uncertainty in predicted OH
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First-Order Sensitivity Information in a PC Expansion

• Conventional sensitivity

u = u(x, t;λ) : S =
∂u

∂λ

∣
∣
∣
λ0

∼ δu

δλ

∣
∣
∣
λ0

• Sensitivity in a stochastic UQ context

λ =

P∑

k=0

λkΨk(ξ), u =

P∑

k=0

ukΨk(ξ)

• For Hermite Ψk:

S =
∂u

∂λ
=
∂u/∂ξ

∂λ/∂ξ
=

∑P−1
k=0 (k + 1)uk+1Ψk

∑P−1
k=0 (k + 1)λk+1Ψk

=

P∑

k=0

SkΨk

• Extends to multi-D case with independent parameters
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Intrusive Spectral Stochastic UQ Formulation: ODE Example

• Sample ODE with parameter λ:

du

dt
= λu

• Let λ be uncertain; introduce ξ ∼ N (0, 1).
Express λ and u using PCEs in ξ:

λ =

P∑

k=0

λkΨk, u =

P∑

k=0

ukΨk

• Substitute in ODE and apply a Galerkin projection on Ψi(ξ),

dui
dt

=

P∑

p=0

P∑

q=0

λpuqCpqi, i = 0, . . . , P

where the Cpqi =
〈
ΨpΨqΨi

〉
/
〈
Ψ2
i

〉
are known coefficients
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Pseudo-Spectral Implementation

Spectral Product : w = uv

w = u ∗ v ⇒ wi = 〈uv〉i , i = 0, · · · , P

Psuedo-spectral higher-order polynomial terms :

w = λu2v ⇒ w = λ ∗ (u ∗ (u ∗ v))

Division :

w =
u

v
⇒ 〈vw〉k = uk, solve linear equation system for wk

Arbitrary functions u = f (x) where u̇ = df
dx is a rational function

of x & u :

uk(xb) − uk(xa) =

P∑

j=0

∫ (xb)j

(xa)j

P∑

i=0

Cijk(u̇)idxj
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Spectral UQ: Incompressible Flow - Stochastic Projection Method

• (P+1) Galerkin-Projected Momentum equations, q = 0, . . . , P :

∂vq
∂t

+ ∇ · 〈vv〉q = −∇pq +
1

Re
∇ ·

〈

µ[(∇v) + (∇v)T ]
〉

q

• Projection: for q = 0, . . . , P :

ṽq − vnq

∆t
= Cnq +Dn

q

∇2pq = − 1

∆t
∇ · ṽq

vn+1
q − ṽq

∆t
= −∇pq

• P + 1 decoupled Poisson Equation solutions for the pressure
modes.
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Laminar 2D Channel Flow with Uncertain Viscosity

• Incompressible flow

• Gaussian viscosity PDF

– ν = ν0 + ν1ξ

• Streamwise velocity

– v =

P∑

i=0

viΨi

– v0: mean

– vi: i-th order mode

– σ2 =

P∑

i=1

v2
i

〈

Ψ2
i

〉

v0 v1 v2 v3 sd

v0 v1 v2 v3 σ
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Spectral UQ Formulation: low M 2D Reacting Flow Equations

∂ρq
∂t

+ ∇ · 〈ρv〉q = 0

∂ 〈ρv〉q
∂t

+ ∇ · 〈ρvv〉q = −∇pq +
1

Re
∇ ·

〈

µ[(∇v) + (∇v)T ] − 2

3
µ(∇ · v)U

〉

q

∂Tq
∂t

+ 〈v · ∇T 〉q =

〈
(γ − 1)

γρcp

dpo
dt

〉

q

+
1

RePr

〈∇ · (λ∇T )

ρcp

〉

q

− 1

ReSc

〈
N∑

i=1

cp,i
cp

V i · ∇T
〉

q

− Da

〈

1

ρcp

N∑

i=1

hiwi

〉

q

∂ 〈ρYi〉q
∂t

+ ∇ · 〈ρvYi〉q = − 1

ReSc
∇ · 〈ρYiV i〉q +Da 〈wi〉q i = 1, . . . , N

• Time Integration:

– Operator-Split reaction-diffusion integration of (P + 1)(N + 1) species and energy eqns

– Stochastic Projection Method integration of (P + 1) momentum equations
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UQ in constant-pressure ignition

N -species, with mass fractions Yi:
dYi
dt

=
wi
ρ
, i = 1, · · · , N

dT

dt
=
wT
ρcp

with wT = −∑N
i=1wi and wi =

∑M
k=1 νikRk

Example: CH4 + 2O2 → CO2 + 2H2O
Stoichiometric coefficients : νik = {1, 2, 1, 2}
Reaction rate of progress : Rk = [CH4][O2]

2 AkT
nke−Ek/T

• Quantify reaction-rate pre-exponential (Ak) uncertainty with mul-
tiplicative factor Fk :

P

(
Ak
Fk

< Ak < FkAk

)

= 0.95
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Large activation energy (Ek) exponentials lead to very fast changes

in species concentrations and temperature

• Methane-air ignition — Global single-step irreversible mechanism

• Initial T = 800K

• Stoichiometric

• p = 1 atm (constant)
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Increased Ek leads to higher peak dT/dt and higher consequence of

small uncertainties in reaction rate constants
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• Ak = Ak(ξ), 1-D Wiener-Hermite

• PC UQ captures sampled stochastic behavior at low Ek

– with miniscule uncertainty in Ak (F = 1.00002, COV=10−5).

• Unphysical effects observed at high activation energy
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Increasing Ak COV towards minimally-practical levels leads to failed

time integration
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• Unrealistic to expect a WH PC expansion in 1D to capture
expected PDFs at realistic reaction-rate parametric uncertainties

• Need increased dimensionality of the PCEs, using multiple ξ’s for
each uncertain parameter, for increased accuracy and stability
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UQ in constant-pressure isothermal ignition – H2-O2 SCWO system

• Using 1D Wiener-Hermite PC, with order P

• Computations stable for small reaction-rate uncertainty

• SCWO with only Rxn-7 uncertain :

• P = 1: stable∗

• P = 2: fails for UFk ≥ 2.55

• P = 3: stable∗

• P = 4, 5: fails for UFk ≥ 2.23

∗(up to empirical UFk = 3.16)
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Experience with Instabilities and Intrusive PC UQ

• Regions of explosive mode growth
can lead to instabilities.

• Fast growth of high-order modes,
and fast drift of the solution
towards unphysical values

• Standard deviation increases
significantly, becoming a sizeable
fraction of the mean.

• Increasing PC order does not help

• NB. all with fixed PC dimension
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Reagan, Najm, Debusschere, Le Mâıtre,

Knio, and Ghanem, CTM, 2004;
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Causes of instability in Chemical Systems

• Gaussian has infinite support

• Finite probability of negative concentrations

• Cannot satisfy strict positivity

• Result of finite PC order and fixed PC dimension

• Fails in chemical systems
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Model Problem: Bifurcations and Intrusive PC UQ

• Consider a model problem : dudt = u(u + 10)(1 − u)

• Fixed points: attractive: u = −10, 1; repulsive: u = 0

• Initial condition stochastic: U =
∑P
k=0UkΨk.

• Integrate for uk(t), k = 0, . . . , P
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Model Problem: Consequence of Initial PDF tail zero crossing
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U
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• σU/U0 >≈30% attracts u0 towards negative region

• Even for low σU , increasing PC order leads to similar drift

• Similar behavior for Gaussian or Lognormal initial condition

• Similarly with Laguerre polynomial/Gamma distribution basis
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Challenges with the use of a Global PC Basis for Intrusive UQ

• Global PC expansion with N -th order polynomial will have N
roots/zero-crossings in general

• Representing a RV with a global PC expansion (over all ξ)

• with fixed dimensionality and order

• will ’sample’ both positive and negative u-realizations

• irrespective of PDF(u)

• Fails when strict positivity is necessary for stability

• e.g. reaction rate constants, concentrations, temp

• Possible remedies with appropriate filtering strategies

• Eval local low order basis vs. the global high order approach

• Wavelets, Multi-Resolution Analysis

Le Mâıtre et al., J. Comp. Phys., 197, 28-57, 2004
Le Mâıtre et al., J. Comp. Phys., 197, 502-531, 2004
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Uncertainty Quantification with Multiwavelets

• An uncertain field quantity u(x, t, θ) is expressed using PC

u =

P∑

k=0

uk(x, t)Ψk(ξ1, . . . , ξN )

• Introduce ζi = p(ξi): CDF of ξi, where ζi is on [0,1]

u = g(ξ1, . . . , ξN ) = f (ζ1, . . . , ζN )

• Represent f (ζ) using N -D multiwavelets (Alpert, 1993)

u =

Q
∑

λ=0

ũλ(x, t)Wλ(ζ1, . . . , ζN )

Le Mâıtre, Ghanem, Knio, and Najm, J. Comp. Phys., 197:28-57 (2004)

Le Mâıtre, Najm, Ghanem, and Knio, J. Comp. Phys., 197:502-531 (2004)
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Haar-Wavelets

Haar scaling functions

φw(y) =

{

1, 0 ≤ y < 1

0 otherwise

Scaled Haar functions, scaling factor j, and sliding factor k,

φwjk(y) = 2j/2φw(2jy − k)

Haar function (mother wavelet)

ψw(y) ≡ 1√
2
φw1,0(y)−

1√
2
φw1,1(y) =







1, 0 ≤ y < 1
2,

−1, 1
2 ≤ y < 1,

0, otherwise.

Wavelet family

ψwj,k(y) = 2j/2ψw(2jy− k), j = 0, 1, . . . and k = 0, . . . , 2j − 1
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Wiener-Haar Construction

The set of ψwj,k(y) is an orthonormal system

Any function f ∈ L2([0, 1]) can be arbitrarily well approximated by
the sum of its mean and a finite linear combination of the ψwj,k(y).

The wavelet set Wj,k(ξ(θ)) ≡ ψwj,k(p(ξ)) forms a basis for the

space of L2 random processes.

X(ξ(θ)) = Xo +

∞∑

j=0

2j−1∑

k=0

Xw
j,kψ

w
j,k(p(ξ)) =

∑

λ

XλWλ(ξ(θ))

Multidimensional {ξ1, ξ2, . . . , ξN},

W =

N∏

k=1

Wλk
(ξk)
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Multidimensional Multiwavelet Construction

• Wiener-Haar PC able to represent uncertainty in systems ex-
hibiting bifurcations depending on parameter values

• Poor convergence relative to PC constructions with smooth
global bases on smooth functions

• Use multiwavelet construction (Alpert, 1993) employing higher
order polynomials instead of the Haar-functions

• For efficient multidimensional construction, use

• Block-decomposition of the stochastic space

• A local MW construction on each block employing

• Scaled Legendre polynomials on [0, 1]
• First level Multiwavelet details

• Adaptive resolution in each dimension on each block
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UQ in constant-pressure isothermal ignition — MRA

• H2-O2 SCWO with only Rxn-7 uncertain (F7 = 3.16)
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UQ in constant-pressure isothermal ignition — MRA

• H2-O2 supercritical
water oxidation
model

• Empirically-based
uncertainty in all 7
reactions

• Adaptive refinement
of MW block
decomposition in
each dimension 0 2 4 6 8 10
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Le Mâıtre, Najm, Pébay, Ghanem, and Knio,

SIAM J. Sci. Comp., 22(2):864-889, 2007
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Conclusions

• Non-intrusive Spectral UQ

• PC-construction enables extraction of sensitivities

• Quadrature and cubature to reduce no. of samples

• Intrusive Spectral UQ in reacting flow

• Global basis OK for weakly non-linear systems

• Potential utility of multiple ξ’s per uncertain parameter

• Adaptive multiwavelet MRA construction

• Accuracy, robustness, and efficiency demonstrated
on a number of model problems

• Resolves global PC difficulties
• Demonstration in exothermic ignition and flames

in progress
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Prospects

• Cubature methods for efficient evaluation of high dimensional
integrals

• Adaptive general multiwavelet solution of non-linear systems

• Challenges

• Convection

• Limit-cycle and chaotic systems

• Dimensionality
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