Interfacial Properties of Polydim SAND2007-7383Clater Systems

Ahmed E. Ismail, Gary S. Grest, David R. Heine, Mesfin Tsige,* and M. J. Stevens

Sandia National Laboratories, *Department of Physics, Southern Illinois University

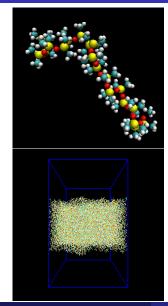
AIChE 2007 Annual Meeting

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

Outline

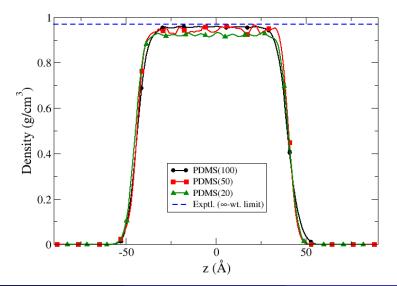
- Motivation
- 2 Methodology
- Interfacial behavior
- Diffusion properties
- Conclusions

Motivation


- Siloxanes are commercially valuable silicon polymers
 - Adhesives and sealants
 - Lubricants
 - Heat transfer fluids
- Study the interaction of water and siloxanes in particular polydimethysiloxane (PDMS)
 - Diffusion of water through bulk PDMS
 - Dynamics of wetting a PDMS surface
 - ★ Surface tensions both PDMS and water
 - Not widely available for PDMS; many studies for water

Simulation details

PDMS surface tension


- 500 20-mers (103500 atoms) or 100 100-mers (107000 atoms)
- Simulation box: 100 Å× 100 Å× 170 Å
- Buckingham (Exp-6) potential of Smith et al. (2004)
 - ▶ 10 A cutoff
 - PPPM Ewald for electrostatics
- All-atom NVT simulation at 300 K using RESPA with 10⁶ time steps of 2 fs
- Total time: 2 ns

Simulation results: liquid-vapor density

Density of longer chains rapidly approaches bulk limit

Simulation results: surface tension

Density of longer chains rapidly approaches bulk limit

Surface tension includes results of simulation plus long-range correction:

$$\gamma = \gamma_{\it p} + \gamma_{\it tail}$$

where

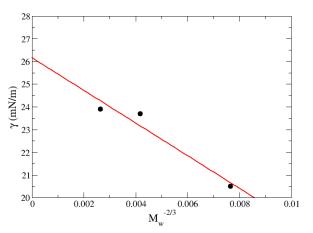
$$\gamma_{p} = \frac{L_{z}}{2} \left(p_{z} - \left(\frac{p_{x} + p_{y}}{2} \right) \right)$$

$$\gamma_{tail} = \frac{\pi}{2} \int_{-\infty}^{\infty} \int_{-1}^{1} \int_{r_{c}}^{\infty} r^{3} \frac{dU(r)}{dr} g(r) \left(1 - 3s^{2} \right) \times \left(\rho(z) \rho(z - sr) - \left(\rho_{G}(z) \right)^{2} \right) dr ds dz$$

Simulation results: surface tension of PDMS

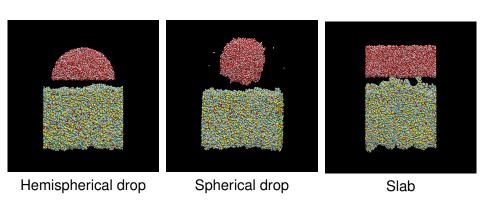
Surface tension increases with molecular weight for -CH3 PDMS

	Surface tension, mN/m			
Chain type	$\gamma_{m ho}$	$\gamma_{\it tail}$	$\gamma = \gamma_{\it p} + \gamma_{\it tail}$	
20-mer -CH ₃	15.0	5.5	20.5	
50-mer -CH ₃	18.0	5.7	23.7	
100-mer -CH ₃	18.5	5.4	23.9	
20-mer -OH	16.4	5.2	21.6	

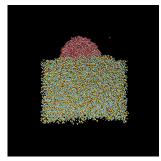

Exptl. value, infinite molecular weight: $\gamma = 21.0 \text{ mN/m}.$

[Dee and Sauer, Macromolecules, 26, 2771 (1993).]

Simulation results: surface tension of PDMS


-2/3-power law dependence

$$\gamma(\textit{M}_{\textit{w}} = \infty) = 26.2 \text{ mN/m (simulation)} \ \gamma(\textit{M}_{\textit{w}} = \infty) = 21.0 \text{ mN/m (experimental)}$$



Three different geometries tested

Three different geometries tested

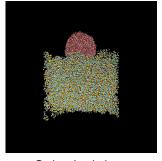
Hemispherical drop


- 60 Å radius hemispherical drop (∼ 10000 molecules) placed on top of PDMS slab
- 2 ns simulation in NVT ensemble at 300 K
- Measure contact angle as a function of PDMS chain length

Chain length	Contact angle (deg.)
20-mer -CH ₃	108 ± 10
50-mer -CH ₃	$\textbf{108} \pm \textbf{10}$
100-mer -CH ₃	108 ± 10

Exptl. contact angle: 105-120 degrees

Three different geometries tested


Spherical drop

- 50 Å radius spherical drop (\sim 10000 molecules) placed on top of PDMS slab
- 2 ns simulation in NVT ensemble at 300 K
- Measure contact angle as a function of PDMS chain length
- Use Young's equation to determine surface tension of PDMS-water interface:

$$\gamma_{PW} = \gamma_P + \gamma_W \cos \theta$$

where $\gamma_W=$ 61 mN/m is the surface tension of SPC/E water

Three different geometries tested

Spherical drop

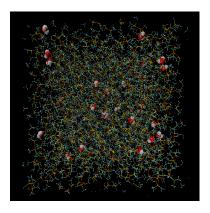
Chain length	Contact angle (deg.)
20-mer -CH ₃	108 ± 10
50-mer -CH ₃	108 ± 10
100-mer -CH ₃	$\textbf{108} \pm \textbf{10}$

- Using Young's equation, we find $\gamma_{PW}=39\pm 8$ mN/m.
- \bullet Exptl. value \sim 40 mN/m

Three different geometries tested

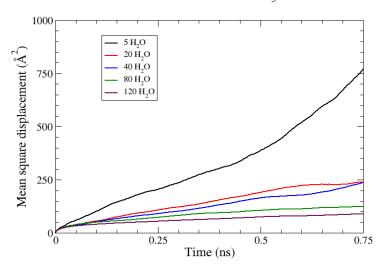
Slab

- ullet 50-Å thick slab of water (\sim 20000 molecules) placed on top of PDMS slab
- 2 ns simulation in NVT ensemble at 300 K
- Measure total surface tension
- γ for PDMS-water surface tension given by overall γ , less water-vapor, PDMS-vapor interfaces:


$$\gamma_{PW} = \gamma_{tot} - (\gamma_P + \gamma_W)$$

• For 100-mer -CH₃ PDMS, $\gamma_{PW} = 127 - (24 + 61) = 42 \text{mN/m}$

Simulation methodology

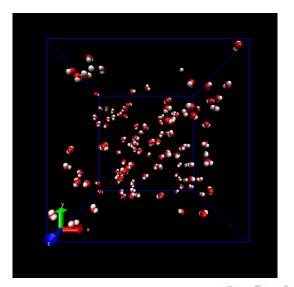

- 5-120 water molecules placed in bulk sample of 100 20-mers or 20 100-mers (-CH₃ and -OH terminated)
- > 2 ns MD simulations in the NVT at T = 300 K.
- Measure rms displacement of waters as a function of time
- Goals:
 - Determine diffusion constant
 - Observe phase separation

Strong concentration effects on diffusion

Diffusion of water through 100-mer CH₃-terminated PDMS

Concentration, terminal-group effects on diffusion

	Diffusion constant, D (Å ² ps ⁻¹)		
Chain type	5 H ₂ O	20 H ₂ O	
20-mer -CH ₃	0.2742	0.0531	
20-mer -OH	0.1524	0.0513	
100-mer -CH ₃	0.1490	0.0518	
100-mer -OH	0.1197	0.0808	


Exptl. value, bulk H_2O : 0.2272 $Å^2$ ps⁻¹

Phase separation observed for concentrations > 20 water molecules

Water molecules quickly form clusters

Conclusions

- PDMS, water surface tensions underestimated by surface tension
- Diffusion constants reasonable
 - Some termination-group effects
 - Phase separation occurs for intermediate to high concentrations of water
- Contact angle of PDMS-water interface
 - Different geometries yield almost identical contact angles
 - Results in reasonable agreement with experimental data
- PDMS-water interfacial tension
 - Different approaches to calculating PDMS-water interfacial tension yield comparable results
 - Also in good agreement with experimental observations

Acknowledgments

- Scott W. Sides (prior PDMS studies)
- Steven J. Plimpton (LAMMPS)

