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Abstract
We present SPOT, a Sensor Placement Optimization Tool. SPOT provides a
toolkit that facilitates research in sensor placement optimization and enables the
practical application of sensor placement solvers to real-world CWS design
applications. This paper provides an overview of SPOT’s key features, and then
illustrates how this tool can be flexibly applied to solve a variety of different types
of sensor placement problems.

1 Introduction

Contamination warning systems (CWS) have been proposed as a promising approach for the
early detection of contamination events in drinking water distribution systems [1, 2, 3, 22]. The
overall goal of a CWS is to detect contamination events in time to reduce potential public health
and economic consequences. Online sensors will be a critical component of a CWS, and a key
element of CWS design is the optimization of the number and locations of sensors at utility.

We describe SPOT, a Sensor Placement Optimization Tool for CWS design in water distribution
systems. SPOT integrates a variety of solvers for sensor placement that have been developed by
Sandia National Laboratories and the Environmental Protection Agency, along with many
academic collaborators [5, 6, 7, 8,9, 10, 11, 12, 18, 23, 24]. SPOT includes (1) general-purpose
heuristic solvers that consistently locate optimal solutions in minutes, (2) integer-programming
heuristics that find solutions of provable quality, (3) exact solvers that find globally optimal
solutions, and (4) bounding techniques that can evaluate solution optimality. SPOT uses a
generic solver formulation that allows a user to specify a wide range of performance objectives
for contaminant warning system design, including population-based public health measures, time
to detection, extent of contamination, volume consumed and number of failed detections. SPOT
has been integrated into the Environmental Protection Agency's TEVA-SPOT tool, which
supports graphical analysis of threat assessment and sensor placement. TEVA-SPOT has been
used to develop sensor placement designs for several large U.S. cities.

In general, a user may care about more than one of these performance objectives, so SPOT
allows for the specification of constraints that ensure that multiple performance objectives are
simultaneously satisfied. SPOT facilitates the interactive design and analysis of sensor placement
designs. For example, a SPOT user can integrate expert knowledge during the design process by
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specifying required sensor placements or designating network locations as forbidden. Further,
cost considerations can be integrated by limiting the design with user-specified installation costs
at each location.

This paper summarizes the key features of SPOT, and describes the canonical problem
formulation solved by SPOT solvers. We illustrate the flexibility of this framework in several
simple examples. These examples illustrate how SPOT is used to optimize performance
objectives, minimize costs, perform multi-objective analysis, constrain sensor placements, and
perform optimization with limited memory resources.

2 SPOT Overview

SPOT provides a toolkit that facilitates research in sensor placement optimization and enables
the practical application of sensor placement solvers to real-world CWS design applications. A
wide range of sensor placement optimization formulations and solver techniques have been
developed for CWS design in drinking water systems [6, 10, 13, 14, 15, 16, 17, 20, 21].
Although SPOT certainly leverages much of this work, the goal of SPOT is to develop a toolkit
that can incorporate and evaluate a wide range of sensor placement solvers on a broad class of
CWS design problems. The following sections provide an overview of SPOT that illustrates the
flexibility of this toolkit.

2.1 Contaminants and Contaminant Impacts

SPOT supports a very generic problem formulation that relies on contaminant impacts derived
from an external contaminant transport calculation and impact assessment. An impact
assessment is assumed to come from a set of contamination events, each of which represents a
single location and time of contamination. For example, EPA’s TEVA tool calculates
contaminant and public health impacts using EPANET for hydraulic and water quality
calculations and epidemiological models to estimate exposure and disease progression [19].

2.2 Performance Objectives

There are many competing CWS design objectives, such as minimizing exposure to
contaminants, minimizing illness, minimizing the spatial extent of contamination, minimizing
sensor detection time, and minimizing CWS costs. SPOT treats each of these objectives as a
separate contaminant impact assessment (e.g. you can have a different impact assessment for the
extent of contamination and the time to detection for a single contaminant). One or more
contaminant impact assessments can be integrated into SPOT, thereby allowing for trade-offs
between different contaminants, as well as different impacts for single contaminants.

2.3 Problem Formulations

The canonical SPOT formulation is to minimize the mean impact of contamination for CWS
design. SPOT also allows for user-specified weights on the expected impact. Further, SPOT
solvers can optimize other performance objectives like worst-case impact and related robustness
performance measures that trade-off mean- and worst-case impacts.



2.4 Limited-Memory Requirement

The expected application platform for SPOT is 32-bit MS Windows workstations. Consequently,
SPOT supports sensor placement solvers that can work with 4GB of memory, even for water
distribution networks with 10,000s of pipes and junctions. Although SPOT’s integer
programming solvers require more than 4GB of memory for these large networks, integer
programming heuristics have been developed that solve a related, reduced-memory formulation.

2.5 Flexible Solvers

The rapid solution of large sensor placement optimization is essential to provide users the ability
to explore a wide range of performance objectives and design trade-offs. Fast heuristic methods
are included in SPOT that can reliably and quickly solve the mean impact sensor placement
formulation. Rigorous performance guarantees are also needed to ensure that the final solution
generated by SPOT is the best one possible. In cases where this cannot be guaranteed, methods
have been developed that can quantify the optimality of the final solution.

3 A Canonical Sensor Placement Formulation

A key principle in the development of SPOT has been the development of mathematical sensor
placement formulations that guide the development of subsequent solvers. The canonical
formulation used in SPOT is the mean-impact formulation, which can be expressed as the
following integer program:
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This formulation models the placement of p sensors on a set L vertices, with the objective of
minimizing the expected impact of a set A of contamination events. The binary decision variable
s; for each potential sensor location ¢ € L equals 1 if a sensor is placed at location ¢ and 0
otherwise. Each contamination event a € A has a likelihood «,, such that Zae 40 = 1. Let £,

be the subset of locations that could possibly be contaminated by event a. For all locations ¢ € L,
the impact of the event a is d,;x,;, where d,; is a the precomputed contamination impact for this
event, when detected at location 4, and x,; indicates whether the event has been detected at
location 2. Berry et al. [10] provide further discussion of this model, including details needed to
make the solution of this integer program tractable.

The use of precomputed impact values, d,;, enables the application of this sensor placement
formulation to a wide range of performance objectives, since different objectives simply translate
into different impact values (e.g. see Watson et al. [23]). Further, this formulation can be used to
optimize over the impacts of multiple contaminants. Computation of the mean impact across
multiple contaminants reduces to the computation of a single set of impact values. Similarly, the
impact of detection delays can be captured in these impact values, and thus this formulation can
account for a sophisticated response to sensor detections.



4 Using SPOT

Conceptually, the process of sensor placement can be decomposed into four steps:

Performing water quality simulations
Computation of impact values
Sensor placement optimization
Analysis of final sensor placement(s)

P

Although SPOT contains components supporting all of these steps, our examples illustrate how
SPOT can be used for sensor placement optimization (step 3).

The common interface to SPOT’s sensor placement solvers is the sp script. The following
sections illustrate the use of sp, to solve the canonical sensor placement formulation described in
Section 3 and related sensor placement problems. These examples use EPANET network
example 3. The sp script has many different options, but the following are commonly used:

--network=<network>
The name of the network that will be analyzed
-—-objective=<goal> <statistic>
The sensor placement objectives.
--ub=<objective>,<ub-value>
A constraint on the maximal value of an objective.
--costs=<filename>
A file containing costs for the installation of sensors
--sensor-locations=<filename>
A file containing information about whether network ids are feasible
for sensor placement, and whether a sensor placement is fixed at a
given location.
--solver=<type>
Specifies the type of solver that is used to find sensor placement(s).
—-—-compute-bound
Only compute a bound on the value of the optimal solution.

4.1 Example 1 - A Simple Example

Our first example shows how to use a heuristic solver to minimize the extent of contamination
(EC) while limiting the number of sensors (NS) to no more than 5.

$ ../../../bin/sp —--path=../../../bin --path=../mod --network=testl --
objective=ec --ub=ns,5

Number of Contamination Events: 97
Number of Contamination Impacts: 9458

Validating input for heuristic solver

Number of sensors=5

Objective=ec

Statistic=mean

Impact file=/home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/testl ec.impact

Delay=0




Running iterated descent heuristic for *perfect* sensor model
Iterated descent completed - sensors written to file=testl.sensors

Sensor placement id: 846930886

Number of sensors: 5

Total cost: 0

Sensor node IDs: 19 28 54 63 75
Sensor junctions: 119 141 193 207 239
Impact File: /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/testl ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 8478.9674

Lower quartile impact: 0.0000

Median impact: 6949.0000

Upper quartile impact: 12530.0000

Value at Risk (VaR) ( 5%): 25960.0000

TCE ( 5%): 33323.2833

Max impact: 42994.8000

The first output lines summarize the statistics of this network example. Subsequent lines until the
first dashed line are generated by the heuristic optimization solver; for simplicity, this text will
be omitted in subsequent examples. The information between the dashed lines is a summary of
the best sensor placement found. The sensor junctions correspond to the junction labels provided
by the user (e.g. from the EPANET input file). Various impact statistics are given, including the
mean (which is optimized here), and maximum (worst) impact amongst all contamination events.
The VaR and TCE statistics are robust optimization criteria. VaR is the value of the 95 quartile
(the impact that is greater than 95% of the impacts), and TCE is the expectation of the worst 5%
of the impacts.

The heuristic solves the sensor placement formulation described in Section 3. Consequently, we
evaluate the optimality of this solution by solving the linear programming relaxation of this
integer program. This can be done in SPOT using the PICO solver:

$ ../../../bin/sp —--path=../../../bin --path=../mod --network=testl --
objective=ec --ub=ns,5 --solver=pico --compute-bound

Number of Contamination Events: 97
Number of Contamination Impacts: 9458

Objective lower bound: 8478.96737288

This computation demonstrates that the heuristic has found an optimal solution. This can be
confirmed by running SP with the PICO solver but without the compute-bound option. Without
this option, PICO find a globally optimal solution, though for large applications it may take too
long to run.




4.2 Example 2 — Optimizing Costs

The canonical SPOT formulation makes the tacit assumption that the cost of each sensor
placement is equivalent. In practice this is not likely to be true for a variety of reasons (e.g. see
Berry [8]). SPOT supports the generic specification of sensor placement costs using the costs
option, which is used in conjunction with the ‘cost’ performance objective. For example,
suppose that the file cost_info contains the following:

119 2.0
141 2.0
193 2.0
207 2.0
239 2.0

__default 1.0

This cost information can be used to constrain our previous example. In this case, we show that
if the original points were too expensive, then we would not use any of them if other sensor
placement locations were cheaper.

$ ../../../bin/sp --path=../../../bin --path=../mod --network=testl --
objective=ec --ub=cost,10 --solver=pico --costs=cost info

Number of Contamination Events: 97

Number of Contamination Impacts: 9458

Sensor placement id: 13195

Number of sensors: 10

Total cost: 10

Sensor node IDs: 74 62 38 50 32 16 18 10 24 21

Sensor junctions: 237 206 163 185 149 113 117 101 127 121
Impact File: /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/testl ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 5207.0453

Lower quartile impact: 0.0000

Median impact: 3610.0000

Upper quartile impact: 10416.0000

Value at Risk (VaR) ( 5%): 14985.0000

TCE ( 5%): 17332.3583

Max impact: 20170.0000

Similarly, SPOT can minimize costs or the number of sensors while maintaining a given
performance. The following example minimizes the number of sensors with EC bounded to be
no more than 6000.0.



$ ../../../bin/sp --path=../../../bin --path=../mod --network=testl --
objective=ns --ub=ec,5000 --solver=pico

Number of Contamination Events: 97
Number of Contamination Impacts: 9458

Sensor placement id:
Number of sensors:
Total cost:

Sensor node IDs:
Sensor junctions:

Impact File:

75 63 28 38 50 33 54 17 11 21
239 207 141 163 185 151 193 115 103 121

/home/wehart/src/spot-th/builds/teva-spot-

s/spot/packages/sp/test/testl ec.impact

Number of events:

Min impact:

Mean impact:

Lower quartile impact:
Median impact:

Upper quartile impact:
Value at Risk (VaR) (

5%) :
TCE ( 5%):

Max impact:

236

0.0000
4675.6708
0.0000
3610.0000
6984.0000
14490.0000
17874.4083
22450.0000

4.3 Example 3 — Multi-Objective Analysis

The canonical SPOT formulation optimizes a single objective subject to a cost constraint. This
formulation can be generalized to include additional constraints that limit the impact of other
performance objectives. The following example illustrates how the first example can be
extended to re-optimize the solution with respect to a different objective. First, we evaluate the
final sensor placement generated by the heuristic solver using the mass consumed (MC) impact
values.

$ ../../../bin/evalsensor testl.sensors testl mc.impact
Sensor placement id: 846930886

Number of sensors: 5

Total cost: 0

Sensor node IDs: 19 28 54 63 75

Sensor junctions:

Impact File: testl mc.impact
Number of events: 236

Min impact: 0.0000

Mean impact: 43636.7076
Lower quartile impact: 220.0020

Median impact: 1909.9500

Upper quartile impact: 105031.0000
Value at Risk (VaR) ( 5%): 144271.0000

TCE ( 5%): 144345.0000

Max impact: 144477.0000




Since this sensor placement was generated by optimizing for EC, the MC impacts are likely to be
non-optimal. The following optimization minimizes MC while keeping EC close to its optimal
value. Note that statistics for both impact values are reported, which show that we have satisfied
this constraint while improving (minimizing) the mean MC impact.

$ ../../../bin/sp --path=../../../bin --path=../mod --network=testl --
objective=mc --ub=ns,5 --ub=ec,9000.0

Number of Contamination Events: 97

Number of Contamination Impacts: 9458

Sensor placement id: 1681692777

Number of sensors: 5

Total cost: 0

Sensor node IDs: 2 19 54 63 75
Sensor junctions: 15 119 193 207 239
Impact File: /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/testl mc.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 39963.3542

Lower quartile impact: 220.2160

Median impact: 1546.2700

Upper quartile impact: 86439.9000

Value at Risk (VaR) ( 5%): 144271.0000

TCE ( 5%): 144276.3333

Max impact: 144335.0000

Impact File: /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/testl ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 8844.6453

Lower quartile impact: 0.0000

Median impact: 6949.0000

Upper quartile impact: 13502.0000

Value at Risk (VaR) ( 5%): 25960.0000

TCE ( 5%): 35007.4500

Max impact: 42994.8000

SPOT supports an arbitrary number of such constraints. However, in practice only one
additional side constraint can be effectively solved.

4.4 Example 4 — Constraining Sensor Locations

Properties of the sensor locations can be specified with the sensor-1locations option. This
option specifies a file that can control whether sensor locations are feasible or infeasible, and
fixed or unfixed. For example, suppose that the file 1ocations contains

infeasible 119 141 193 207 239
fixed 161




Then the following example shows that these restrictions lead to a solution with a value that is
worse than the first example (above) which has an optimal value of 8478.9674.

Sensor placement id:
Number of sensors:
Total cost:

Sensor node IDs:
Sensor junctions:

Impact File:

$ ../../../bin/sp --path=../../../bin --path=../mod --network=testl --
objective=ec --ub=ns,5 --sensor-locations=locations

Number of Contamination Events: 97
Number of Contamination Impacts: 9458

1804289383

5

0

17 33 37 50 66

115 151 161 185 211

/home/wehart/src/spot-th/builds/teva-spot-

s/spot/packages/sp/test/testl ec.impact
Number of events: 236

Min impact: 0.0000
Mean impact: 9338.7119
Lower quartile impact: 0.0000
Median impact: 7640.0000
Upper quartile impact: 14120.0000

Value at Risk (VaR) (
TCE ( %) : 32282.3000
Max impact: 45300.0000

%): 27335.0000

4.5 Example 5 - Limited-Memory Solvers

A key issue for the practical application of SPOT is the memory requirements for SPOT’s
heuristic and integer programming solvers. The memory required for sensor placement solvers
can be significantly impacted by the number of junctions at which sensor placement is feasible,
the number of contamination events that are modeled, and the extent to which these events
impact a large fraction of the network. SPOT’s solvers can be effectively applied to applications
with 100s of junctions and pipes on 32-bit workstations with 4GB of RAM. However, larger
applications often exceed available memory resources. SPOT includes several mechanisms that
reduce the solver memory requirements, at the expense of a slower run time and possible
inaccuracies in the problem formulation. These modified solvers are able to optimize
applications with 10,000s of junctions and pipes using only a few gigabytes of memory.

Two related strategies have been developed for applying SPOT’s integer programming solver
with limited memory; see Berry et al. [4] for further details on these strategies. The first strategy
involves combining contamination events that have very similar impacts. This approach
integrates two or more impact files into an aggregated impact file that contains representative
impact events. Thus, this can be viewed as a preprocessing step for SPOT’s optimizers.

The second strategy involves a reformulation of the integer programming formulation to reduce
the number of decision variables and constraints that need to be processed. This method
leverages the fact that many impact values are similar, and thus is make sense to aggregate



similar impact values together. Two methods are supported for this aggregation process in
SPOT: (ratio) — limits the ratio of the smallest impact to largest impact in a set that is aggregated
together, and (percent) — uses an aggregation threshold that is based on the percent of the
difference of the largest to smallest possible impacts.

Table 1 illustrates the uses of using these two aggregation strategies on the size of the integer
program, the total memory needed to solve the problem (using the PICO integer programming
solver included with SPOT). Further, this table shows that the final solution computed with the
ratio aggregation can be used to compute a lower bound on the value of the best sensor
placement. Note that the zero percent aggregation is the default mechanism used in SPOT, since
this performs a simple aggregation without impacting the final solution.

Percent | Ratio # # # Final Lower Memory
Variables | Constraints | Nonzeros | Solution Bound (Kb)
None | None 9558 9466 37421 | 21781.98 | 21781.98 39704
0 0.00 4505 4413 22184 | 21781.98 | 21781.98 25904
25 0.00 700 608 9127 | 21804.45 0 18568
50 0.00 571 479 8255 | 21887.27 0 18028
75 0.00 562 470 7102 | 21781.98 0 18164
100 1.00 4505 4413 22184 | 21781.98 | 21781.98 25904
100 0.75 2010 1918 13089 | 21781.98 | 15922.66 20164
100 0.50 1452 1360 11102 | 21781.98 | 10513.44 19496
100 0.25 1084 992 9326 | 21781.98 5125.84 19096
100 0.12 946 854 8568 | 21804.45 2429.90 18964

Table 1. Impact of percent and ratio aggregation on a small sensor placement example (EPANET
network 3). 100-percent aggregation with O-ratio results are omitted, since the integer program
becomes trivially non-interesting in that case.

The sensor placement heuristic solvers generally require much less memory than the integer
programming solver. However, these solvers employ a large matrix of precomputed values that
speeds up the solution of large problems. The heuristic-representation option in SPOT
enables this precomputation to be stored as a sparse matrix, which trades off runtime
performance for space savings.

5 Discussion

These examples illustrate the flexibility of SPOT’s solvers, and the broad applicability of
SPOT’s canonical problem formulation. SPOT also supports advanced model formulations for
robust optimization and modeling sensor placement with imperfect sensor detections. However,
these capabilities cannot be effectively applied to large-scale real-world applications, and thus
they remain a subject of ongoing research.

SPOT sensor placement solvers have been integrated into the TEVA-SPOT tool. This tool has
been used for CWS design studies at several large U.S. cities, and it is being used in ongoing
studies within the EPA’s Water Sentinel program. We expect that much of this software will be
released under an open-source license in 2007. Contact William Hart (wehart@sandia.gov) for
further information.
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