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Target Problems

Remains of the Murrah building after blast 
induced progressive collapse

rupture of containment vessel

• weapons effects

• vulnerability assessments

• blast effects on structures

• arbitrary dynamic fracture

• penetration, perforation, fragmentation

• pervasive failure



Crack Branching, Coalescence, 
Tortuous Crack Paths



• Mesh independent modeling of the pervasive failure of structures 
(objectivity, convergence)

• (almost) arbitrary crack growth, nucleation, bifurcation, coalescence

• a posteriori fragment sizes (output of analysis instead of input)

• Continuum analysis with new surface generation

• Macroscopic analysis (homogenized continuum, nonlocal)

• Usable for ‘real world’ problems in a production environment

Goals



PDE Regularization

Jirasek, M. (1998) ‘Nonlocal models for damage and fracture: comparison of approaches,’ International 
Journal of Solids and Structures, 35, 4133-4145.

Planas, J. et al, (2003) ‘Generalizations and specializations of cohesive crack models,’ Engineering Fracture 
Mechanics, 70, 1759-1776 

cohesive approach nonlocal (integral form)
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• cohesive crack inserted into mesh at 
inception of softening/localization

• additional material law
• potential ‘mismatch’ with continuum 

material model
• difficult to handle mixed mode
• really only applicable for diffuse cracking

• nonlocal continuum model handles entire range 
of material response through softening

• can provide a localization ‘limiter’
• discontinuity inserted into mesh only upon 

completion of softening
• can handle nondiffuse cracking, fragmentation?
• can explain macroscopic size effects
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strain softening material response: consider two types of regularization

View fracture as a localization of damage.



Computational Approach

1. Random Voronoi tessellation (mesh)

2. Polyhedral finite-elements (shape functions generated by RKPM)

3. Fracture only allowed at element edges (dynamic change in mesh connnectivity)

4. Dynamic insertion of cohesive tractions at limit surface

5. Penalty contact (discrete element paradigm)

6. Explicit dynamics solution 

How to allow a continuum to transform into a discontinuum?

• Need a constraint on minimum feature size/angles to control time step and robustness.

• Want volume continuity in time (max sphere packing is only 74%)

• Want to be able to recover original continuum behavior under consolidation.

Methodology

Pandolfi, A. and Ortiz, M. (2002) ‘An efficient adaptive procedure for three-dimensional 
fragmentation simulations,’ Engineering with computers, 18, 148-159.

dynamic insertion of cohesive tractions based on . . . 



Eliminating Mesh Induced Crack Bias

If cracks can grow only at element edges, then need to eliminate any 
directional bias in crack growth (well known in ‘lattice’ methods).

Structured grids can result in 
strong mesh induced bias 
(potentially nonobjective).

• need to use ‘random’ 
discretizations

• statistically isotropic

Voronoi tesselation of 
with random seeding



Dynamic Connectivity

• In the simulation of pervasive failure, can generate multiple new crack 
surfaces per time step.

• Need to have an efficient algorithm for modifying element connectivity.

Need to be able to handle arbitrary
changes in connectivity (multiple new 
crack faces per time step).

• bottom-up approach to reform connectivity
• loop over all faces, partition nodes based on equivalence relation of a shared intact face
• map equivalence classes to new node defs.
• use C++ STL set and map storage classes



Voronoi Mesh Generation

small edge 
regularization for use 
in explicit dynamics
(21 small edges 
eliminated)

dual VoronoiDelaunay triangulation

(Bowyer-Watson insertion)

sequentially random
seeding

• constraint on min. dist.
• seed until ‘max’ packing

Bolander, J., Saito, S., 1998, ‘Fracture Analyses using Spring Networks with Random Geometry,’ 
Engineering Fracture Mechanics, 61, 569-591

adapted from . . .

• Note that each Voronoi junction is randomly 
oriented.

• Most Voronoi junctions are triples with interior 
angles of 120.

• Expect robust behavior in large strain 
gradients compared to a triangulation.



Small Edge Regularization

small edge regularization 
for use in explicit 
dynamics
(21 small edges eliminated)



realization 1 realization 2 realization 3

133 elements 134 elements 129 elements

Multiple Random Mesh Realizations



Polyhedral Element Formulation

Use EFG/RKPM methodology to generate shape functions.
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local support for node I
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1. Generate nodal weight function  by solving Poisson 
equation on compact support.

2. Generate nodal shape function  at each integration 
point using reproducing kernel method.

3. Correct shape function derivatives to satisfy integration 
consistency (Gauss’s theorem).

weight function  shape function 

RKPM 
methodology



Shape Function  and Element Properties

six nodal shape functions
for a regular hexagon

• partition of unity and x

• Kronecker delta property at nodes

• linear on edges

• fully compatible with existing finite elements

• works for non-convex elements

• shape functions defined on original 
configuration

• no isoparametric mapping to ‘parent’ shape

• need to use total-Lagrangian formulation

• mean dilation formulation for incompressibility

• can use conventional material models

• ‘special’ mass-lumping



Shape Function Integration Consistency

with 
correction

without 
correction
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Gauss’s theorem

wj = integration weight, 

 = shape function

Chen, J.S. et al (2001) ‘A stabalized conforming nodal integration for Galerkin mesh-free methods,’ 
International Journal for Numerical Methods in Engineering, 50, 435-466.

‘Tweak’ ,i to satisfy this 
constraint while maintaining 
previous properties.



Contact Formulation

• each element is treated discretely, no overall surface structure

• element is included in search if any edge is ‘cracked’

• penalty formulation (velocity and displacement)

• velocity penalty (plastic contact)

Heinstein, M. et al (2000) ‘Contact-impact modeling in explicit transient dynamics,’ Computer Methods in 
Applied Mechanics and Engineering, 187, 621-640.



Demonstration Problem

25 fps

rigid wall

1’ x 6’ unreinforced concrete 
column (low strength)

H = 2.0

random mesh realizations

H = 1.0

R1 R2 R3 

H = 0.5

R1 R3R2 R3R2R1



show 2 animations

Demonstration Problem

H = 0.5, R1

25 fps

time = 50 ms

max-principal stress field



Crack-Boundary View, H=0.5, R1

t = 1.2 ms t = 1.8 ms

t = 2.4 ms t = 3.3 ms t = 10 ms

H = 0.5, R1

25 fps

show 2 animations



t = 1.2 ms t = 1.8 ms

t = 2.4 ms t = 3.3 ms t = 10 ms

H = 0.5, R1

25 fps

Cohesive-Crack View, H = 0.5, R1

show 2 animations



R1 R2 R3

random mesh realizations

R2

R3

R1

time, t = 50 ms

Multiple Random Realizations, H = 1.0



random mesh realizations

R1 R2 R3

R1

R2

R3

Multiple Random Realizations, H = 0.5

time, t = 50 ms



random mesh realizations

R1 R2 R3

R1

R2

R3

Multiple Random Realizations, H = 0.25

time, t = 50 ms



12 random mesh realizations

element size ~ 1.0 element size ~ 0.5

Fragmentation Statistics



Maximum Fragment Size Statistics

4 mesh sizes, 12 random mesh realizations, homogenous material 

convergence in distribution?
sample size?95% confidence 

interval on mean



random material realizations
• 5% variation on E
• 5% variation on failure surface

one mesh, R1

nominal

r2

Random Material Realizations, H = 0.5

time, t = 50 ms

r1



Fragmentation Statistics

12 random material realizations

element size ~ 0.5

random material realizations
• 5% variation on E
• 5% variation on failure surface



Fragmentation Statistics

nominal material, random mesh one mesh, random material

element size ~ 0.5



How to describe mesh convergence?

• Deterministic governing equations are highly nonlinear and 
have a multitude of bifurcations.

• Material randomness (Brannon and Strack)

• Random Voronoi mesh realizations 

Use the probabilistic concept of convergence in variation
(convergence in distribution)?

Given:



Next Step, Challenges

1. Validation examples (3-point bend, Brazilian, . . .)

2. Nonlocal material (integral form) instead of cohesive approach.

3. Objectivity:  How to define convergence? 

4. How to maintain consistency between subscale representation of 
damage (CDM) and explicit representation of damage by interelement 
cohesive cracks?

5. Application to ductile materials, brittle materials


