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Target Problems

weapons effects

vulnerability assessments

blast effects on structures

arbitrary dynamic fracture

penetration, perforation, fragmentation
» pervasive failure

rupture of containment vessel ) :
induced progressive collapse
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Remains of the Murrah building after blast
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Crack Branching, Coalescence,
Tortuous Crack Paths




Goals

Mesh independent modeling of the pervasive failure of structures
(objectivity, convergence)

(almost) arbitrary crack growth, nucleation, bifurcation, coalescence
a posteriori fragment sizes (output of analysis instead of input)
Continuum analysis with new surface generation

Macroscopic analysis (homogenized continuum, nonlocal)

Usable for ‘real world’ problems in a production environment
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PDE Regularization

Planas, J. et al, (2003) ‘Generalizations and specializations of cohesive crack models,” Engineering Fracture

Mechanics, 70, 1759-1776

Jirasek, M. (1998) ‘Nonlocal models for damage and fracture: comparison of approaches,’ International

Journal of Solids and Structures, 35, 4133-4145.

strain softening material response: consider two types of regularization

View fracture as a localization of damage.
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cohesive approach

» cohesive crack inserted into mesh at
inception of softening/localization

 additional material law

 potential ‘mismatch’ with continuum
material model

« difficult to handle mixed mode

« really only applicable for diffuse cracking

~> & o= window function
\ w = state variable

nonlocal (integral form)

nonlocal continuum model handles entire range
of material response through softening

can provide a localization ‘limiter’

discontinuity inserted into mesh only upon
completion of softening

can handle nondiffuse cracking, fragmentation?
can explain macroscopic size effects
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Computational Approach

How to allow a continuum to transform into a discontinuum?

» Need a constraint on minimum feature size/angles to control time step and robustness.
« Want volume continuity in time (max sphere packing is only 74%)
« Want to be able to recover original continuum behavior under consolidation.

Methodology

Random Voronoi tessellation (mesh)

Polyhedral finite-elements (shape functions generated by RKPM)

Fracture only allowed at element edges (dynamic change in mesh connnectivity)
Dynamic insertion of cohesive tractions at limit surface

Penalty contact (discrete element paradigm)

Explicit dynamics solution

dynamic insertion of cohesive tractions based on . . .
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Pandolfi, A. and Ortiz, M. (2002) ‘An efficient adaptive procedure for three-dimensional
fragmentation simulations,” Engineering with computers, 18, 148-159.
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Eliminating Mesh Induced Crack Bias

If cracks can grow only at element edges, then need to eliminate any
directional bias in crack growth (well known in ‘lattice’ methods).
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Voronoi tesselation of
with random seeding

Structured grids can result in
strong mesh induced bias
(potentially nonobjective).

* need to use ‘random’
- discretizations

» statistically isotropic
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Dynamic Connectivity

 In the simulation of pervasive failure, can generate multiple new crack

surfaces per time step.
* Need to have an efficient algorithm for modifying element connectivity.

Need to be able to handle arbitrary
changes in connectivity (multiple new
crack faces per time step).
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bottom-up approach to reform connectivity
loop over all faces, partition nodes based on equivalence relation of a shared intact face
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map equivalence classes to new node defs.
use C++ STL set and map storage classes
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Voronoi Mesh Generation

adapted from . . .

Bolander, J., Saito, S., 1998, ‘Fracture Analyses using Spring Networks with Random Geometry,’
Engineering Fracture Mechanics, 61, 569-591

sequentially random Delaunay triangulation dual Voronoi small edge

seeding (Bowyer-Watson insertion) regularization for use

« constraint on min. dist. in explicit dynamics

* seed until ‘max’ packing (21 small edges
eliminated)

* Note that each Voronoi junction is randomly
oriented.

» Most Voronoi junctions are triples with interior
angles of 120°.

« Expect robust behavior in large strain
gradients compared to a triangulation.




Small Edge Regularization
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Multiple Random Mesh Realizations

realization 1 realization 2 realization 3

number of elements
N w N (4] o
number of elements
N w N (4] o ~

number of elements
N w N (4] o




Polyhedral Element Formulation

Use EFG/RKPM methodology to generate shape functions.

1. Generate nodal weight function ¢ by solving Poisson
equation on compact support.

2. Generate nodal shape function y at each integration
point using reproducing kernel method.

3. Correct shape function derivatives to satisfy integration
consistency (Gauss'’s theorem).

Vo+1=0
d=0onT

RKPM
methodology

local support fornode I weight function ¢ shape function y
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Shape Function and Element Properties

« partition of unity and x

» Kronecker delta property at nodes

linear on edges

fully compatible with existing finite elements
» works for non-convex elements

 shape functions defined on original
configuration

* no isoparametric mapping to ‘parent’ shape

* need to use total-Lagrangian formulation

« mean dilation formulation for incompressibility
can use conventional material models
‘special’ mass-lumping

six nodal shape functions
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Shape Function Integration Consistency

Chen, J.S. et al (2001) ‘A stabalized conforming nodal integration for Galerkin mesh-free methods,’
International Journal for Numerical Methods in Engineering, 50, 435-466.
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Contact Formulation

Heinstein, M. et al (2000) ‘Contact-impact modeling in explicit transient dynamics,” Computer Methods in
Applied Mechanics and Engineering, 187, 621-640.

each element is treated discretely, no overall surface structure

element is included in search if any edge is ‘cracked’

penalty formulation (velocity and displacement)

velocity penalty (plastic contact)
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1’ x 6’ unreinforced concrete
column (low strength)

25 fps

[

rigid wall

Demonstration Problem

H=1.0

random mesh realizations / 1 \
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Demonstration Problem

Time = 0.0502

H=0.5 R1

max-principal stress field

time = 50 ms

show 2 animations
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Crack-Boundary View, H=0.5, R1

t=10 ms

show 2 animations




cmod

1.000e-03
7.500e-04

5.000e-04
2.500e-04

0.000e+00

t=10 ms

show 2 animations




Multiple Random Realizations, H = 1.0
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random mesh realizations
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Multiple Random Realizations, H = 0.25

time, t =50 ms
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cumulative mass fraction

Fragmentation Statistics

12 random mesh realizations

element size ~ 1.0

45 deg oblique impact

25 fps

random Voronoi realizations
dm=1.0

time snapshot = 300 ms

mean max-fragment = 0.18
stdev max-fragment = 0.09

0.1 0.2 0.3 0.4 0.5
fragment mass fraction (individual)

cumulative mass fraction

element size ~ 0.5

45 deg oblique impact

25 fps

random Voronoi realizations
dm =05

time snapshot = 300 ms

mean max-fragment = 0.20
stdev max-fragment = 0.06

L
0.1 0.2 0.3 0.4 0.5

fragment mass fraction (individual)
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maximum fragment size (fraction)

Maximum Fragment Size Statistics

4 mesh sizes, 12 random mesh realizations, homogenous material
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convergence in distribution?
sample size?
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Random Material Realizations, H = 0.5

time, t =50 ms

nominal

one mesh, R1

random material realizations
 +5% variation on E
* +5% variation on failure surface
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cumulative mass fraction

Fragmentation Statistics

12 random material realizations

with material variability (5%)

nominal

45 deg oblique impact

25 fps

random material realizations
dm=0.5,R1

time snapshot = 300 ms

mean max-fragment = 0.19
stdev max-fragment = 0.06

0.1 0.2 0.3 0.4 0.5
fragment mass fraction (individual)

element size ~ 0.5

random material realizations
 +5% variation on E
» +59% variation on failure surface
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cumulative mass fraction

Fragmentation Statistics

element size ~ 0.5

nominal material, random mesh
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05 7 25 fps
. 4 random Voronoi realizations
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with material variability (5%)
nominal

45 deg oblique impact

25 fps

random material realizations
dm =0.5, R1

time snapshot = 300 ms

mean max-fragment = 0.19
stdev max-fragment = 0.06

0.1 0.2 0.3 04 0.5

fragment mass fraction (individual)
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How to describe mesh convergence?

Given:

» Deterministic governing equations are highly nonlinear and
have a multitude of bifurcations.

» Material randomness (Brannon and Strack)
« Random Voronoi mesh realizations

Use the probabilistic concept of convergence in variation
(convergence in distribution)?
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Next Step, Challenges

Validation examples (3-point bend, Brazilian, . . .)
Nonlocal material (integral form) instead of cohesive approach.
Objectivity: How to define convergence?

How to maintain consistency between subscale representation of
damage (CDM) and explicit representation of damage by interelement
cohesive cracks?

Application to ductile materials, brittle materials
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