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Double Trouble:
How global structure impacts exploration

Evolution Strategies

ABSTRACT

It is commonly believed that population-based methods are
better at optimizing multimodal functions because they tend
to explore more of the fitness landscape before their popu-
lation converges to a compact, globally competitive region.
We show that the effectiveness of this strategy is highly de-
pendent on a function’s global structure. When the local
optima are not positioned in a “big valley”, too much ex-
ploration can cause search to fail. Surprisingly, limiting the
degree to which an algorithm explores can result in a better
global search strategy.

1. INTRODUCTION

A common global search strategy used in evolutionary pa-
rameter optimization is to initially explore the search space
and then exploit the promising regions (or region) identified
during the exploration process. Intuitively, this makes sense:
if an algorithm does not sample the entire search space first,
its overall effectiveness may be largely determined by where
it is initialized. The assumption here is that exploration, us-
ing a limited number of samples, can distinguish between dif-
ferent “global regions” of the search space based on average
effectiveness. This simple model—explore then exploit—has
proven to be an effective strategy on the standard set of ar-
tificial test functions that are frequently used to evaluate
performance. Our results show that as dimensionality in-
creases, the exploration process may be more biased to the
relative size of the global region and not its quality.

Many artificial test functions have a “big valley” topol-
ogy [2]. That is, a decrease in fitness implies that, on aver-
age, search is getting closer to the global optima. Although
the search space is highly multi-modal, the local optima
are structured such that there exists a global trend toward
the best solution. The underlying global structure of this
type of problem is roughly unimodal. Problems that exhibit
this characteristic are sometimes referred to as single-funnel
landscapes.
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While single-funnel landscapes may be common, there
also exist several real-world applications that do not have
a unimodal underlying global structure. Wales [10] suggests
that many optimization problems in computational biology
are difficult because local optima often form distinct, spa-
tially separate clusters within the search space. Problems
of this type have multiple funnels, resulting in a landscape
that has a less predictable underlying global structure.

The way that global structure impacts search is not well
understood. This is partly because many of the test func-
tions used for evaluation have single-funnel landscapes. Al-
though there are also a few test functions that have multiple-
funnels, the number of funnels increases with dimensionality.
This creates a gap in our ability to evaluate global structure.
That is, either we have a single funnel or we have a com-
plex surface that often contains O(2V) funnels, where N
is the problem dimension. This makes it difficult—if not
impossible—to understand search behavior in high dimen-
sions. Without a scalable multi-funnel test problem, our
understanding of how global structure impacts search is lim-
ited.

We have two main objectives in this paper. First, we
describe several new test functions where the number of
funnels remains constant as dimensionality increases. The
difficulty in solving any single funnel is similar to that of
the well-known Rastrigin function. Then, we show that two
evolutionary algorithms, CHC [4] and an Evolution Strat-
egy with Covariance Matrix Adaptation (CMA-ES) [7], both
utilizing the “explore then exploit” philosophy, are increas-
ingly less effective on some multi-funnel test functions. We
conjecture that in high dimensions, the exploration process
is more biased toward the relative size of the funnels and not
their overall quality. Further empirical results on a simple
multi-sphere function with low modality strongly support
this conjecture.

Our results indicate that too much exploration hinders
search in high dimensions. We reduced the amount of ex-
ploration in CMA-ES by using a small initial step-size and
show that this results in a performance gain on our most dif-
ficult multi-funnel functions. One surprising result of this
research is that limiting the degree to which an algorithm
explores the search space can actually improve its global
search performance.

1.1 Motivation and Background

There are several characteristics that make real-world op-
timization problems difficult. The degree to which an al-
gorithm will perform well on an application partly depends
on how well the algorithm can deal with the features that



make the problem difficult. Since artificial test functions
are used to evaluate search performance, the relative merit
in any empirical study is limited by how well we understand
the characteristics that make realistic parameter optimiza-
tion problems difficult and by our ability to embed these
features into benchmark test functions.

Researchers within the computational chemistry commu-
nity have started to pay attention to how global structure
affects problem difficulty [8]. Much of their attention has
been devoted to studying Lennard-Jones clusters, which are
a class of configuration optimization problems where the
goal is to find the spatial positions for a set of atoms that
has the smallest potential energy.

The energy surface of the Lennard-Jones potential is highly
multimodal and the number of local optima increase with
problem size. This means that multiple restarts of local
search will become a less effective global optimization strat-
egy as the number of the atoms in the cluster increases.
From this perspective, finding the best solution for larger
problems should be more difficult. However, there are sev-
eral Lennard-Jones instances where finding the optimal con-
figuration of a small cluster requires significantly more effort
than finding the global solution for clusters with a greater
number of atoms. For example, the optimal configuration of
the N = 38 atom Lennard-Jones problem is more difficult
to find than the global optima of other instances as high as
N = 60 atoms, despite the fact that the N = 38 atom prob-
lem has considerably fewer local optima. One explanation
for this discrepancy in difficulty is that the N = 38 atom in-
stance has a double-funnel global structure. Assuming that
a search algorithm can move between local optima, the un-
derlying global structure of a problem may have a greater
impact on problem difficulty than the number of local op-
tima [9].

2. CREATING GLOBAL STRUCTURE

We have mentioned that there exist some test functions
that have a multi-funnel global structure. For example, the
Schwefel, Rana, and Whitley [12] functions all have O(2")
funnels, where N is the problem dimension. Aside from their
complexity in higher dimensions, these test functions also
have the optimal solutions on, or near, the boundary of the
search space. This means that an algorithm’s performance
may largely depend on how the boundary conditions are
handled. We propose a test function that does not place the
best solutions on the boundary of the search space and that
has a constant number of funnels, regardless of the problem
dimension.

Rastrigin’s function is a well-known multimodal test prob-
lem often used to evaluate an algorithm’s global search per-
formance. It is created by adding local optima to a sim-
ple underlying surface. Specifically, Rastrigin’s function is
comprised of a cosine term and a simple quadratic sphere
function. Because the sphere function is unimodal, this com-
bination produces a single-funnel function (see Figure 1).

We wanted a multi-funnel test problem with properties
similar to Rastrigin’s function because it would isolate global
structure as the main difference impacting problem difficulty
on a problem that is well-understood.

2.1 The Multi-funnel Rastrigin

Our multi-funnel version of Rastrigin’s function is con-
structed by first creating an underlying global structure con-

Figure 1: The original Rastrigin test function. The
dashed line is the quadratic sphere function that de-
fines its (single-funnel) global structure.

taining several quadratic sphere functions, and then adding
the cosine term used in the original Rastrigin test problem
to this surface. Instead of using a single quadratic to create
a unimodal underlying structure, we used multiple sphere
functions to create multiple funnels. The underlying global
structure of our test function is the minimum of each sphere
function, where each quadratic sphere creates a single funnel
in the search space.

The quantity and placement of each funnel is critical for
several reasons. First, if any two funnels are close, the bar-
rier that divides them may be inconsequential. We also want
the relative barrier between each funnel to scale with di-
mensionality. This means that the distances between the
center of each funnel should also increase as dimensionality
increases. Second, we would like the number of local optima
in each funnel to be constructed such that the difficulty of
any single funnel is consistent with that of the original Ras-
trigin problem.

The Rastrigin test function is often bound between (-5, 5).
Given this bound constraint, we propose two configurations
that meet the above criteria; a two- and four-funnel instance.
In both cases, the optimal funnel is located at 2.5 in each
dimension. The second funnel is centered at —2.5, which is
also constant across dimensions. The distance between each
funnel increases proportionally with dimensionality. This
construction also creates an underlying surface that is non-
separable, since each funnel is located on the positive diag-
onal of the search space.

The four-funnel problem adds two additional funnels along
the negative diagonal of the search space. The third fun-
nel is placed at alternating values of (2.5, —2.5) and the
fourth funnel is located adjacent from the third, centered at
(—2.5,2.5). When the problem dimensionality is odd, the
final parameter for each funnel’s center is zero. This keeps
the third and fourth funnels equidistant from the optimal
funnel. Because the centers of these two additional funnels
are closer to the optimal funnel, the barriers that separate
them from the global optima is also the smaller.

Multi-funnel problems are difficult when the basin of at-
traction to the optimal funnel is small and and when other
sub-optimal funnels are nearly as deep as the optima funnel.
For example, the optimal funnel for the 38 atom Lennard-



Figure 2: A double-funnel Rastrigin function.

Jones problem is believed to be about 10% of the size of the
sub-optimal funnel and the best solution in the sub-optimal
funnel differ from the global optima by only a small degree.
[3].

We added a small weight to each sub-optimal funnel in
order to decrease their overall depth. This implies that the
primary funnel is the optimal funnel and its optimum re-
mains zero at the funnel center.

We translate the cosine term used in Rastrigin’s function
by 2.5 so that the minimum of the local optima component
is centered at the bottom of each funnel. A one-dimensional
diagonal slice of the double-funnel Rastrigin function is dis-
played in Figure 2.

In order to make this test function more realistic and,
more importantly, to understand how funnel size affects
search, we scaled the sub-optimal funnels in each problem
by a constant factor, denoted s;. Multiplying a funnel by
a number greater than one will create a more narrow (and
thus steeper) funnel. The opposite is true when s; is less
than one; this creates a wider funnel.

The shape of the funnel affects problem difficulty. We
created variance in funnel size by scaling the sub-optimal
funnels rather than scaling the optimal funnel. This way,
the optimal funnel retains it shape regardless of the problem,
and therefore, has a more consistent level of difficulty.

The overall form of our multi-funnel Rastrigin function
is the sum of the global structure, g(Z), and the additional
local optima, h(Z).

f@) = g(@)+h(@)

The global structure is simply the minimum of each quadratic
sphere. We also use this multi-sphere function, g(Z), with-
out any additional local optima as a test function later in
the paper.

N
g(%) = min < wi + 85 > (i — m,j)2>

i=1
The double-funnel function has j = 2 funnels and the four-
funnel function is comprised of 7 = 4 funnels. Each fun-
nel has a weight w; that controls its depth, and a scale s;
that controls its width. The optimal funnel is never scaled
(s1 = 1.0) and always has a weight of w; = 0. The mean val-
ues pu;,; refer to i*" dimension of the 5" funnel center, and
correspond to the mean values described previously with one

Figure 3: Funnel bias. When both quadratic func-
tions are the same size, there is a linear basin of
attraction boundary between the two functions (not
shown). If the the optimal quadratic is larger (left)
or smaller (right), there is a quadratic boundary
defining the basin of attraction.

additional change; we shifted the centers for the sub-optimal
funnels, p2, ps, and p4, such that the size of each basin af-
ter the weights have been applied, but prior to any scaling,
were proportional to the number of funnels in the problem.
In other words, we altered the centers of each sub-optimal
funnel such that they all occupied the same volume in the
search space before they are scaled by s;. This was done
to control the relative size of each funnel more effectively.
These new center values can be replicated by applying the
following substitutions.

M2 —25 = —2.398179
p3 . —2.5 = —2.236467
pa: —25 = —2.236467

Finally, the local optima are added.
h(Z) = —A-(cos2m(x—pl)+1)

where the value A controls the amplitude of the cosine com-
ponent and has a value of A = 7 in this paper. This is
smaller than Rastrigin’s original, which is A = 10, and
makes our version of the single-funnel problem slightly eas-
ier.

There is a close relationship between the width of a fun-
nel and the size of its basin of attraction. If two funnels
have the same width, meaning they have not been scaled
(s; = 1), then the size of each funnel’s basin of attraction
is the same. However, applying different scaling factors to
each quadratic funnel changes their relative widths. This
also causes the basin of attraction size to change. A two-
dimensional surface contour for the double-funnel instance
is displayed in Figure 3. The optimal funnel is shaded in
each case. The surface on the left has a sub-optimal funnel
scaled by sz = 0.87, creating a wider optimal funnel and a
larger basin of attraction. The sub-optimal funnel on the
right has been scaled by sz = 1.15, which creates a more
narrow optimal funnel and a smaller basin of attraction.

2.2 Measuring Bias

Small biases in low dimensions can have a large impact as
dimensionality increases. It is unclear how the discrepancies
in funnel size that exists in low dimensions (e.g. Figure 3)
will impact the global structure in higher dimensions. In
order to understand this bias, we uniformly selected 10,000
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Figure 4: Understanding funnel bias. As dimen-
sionality increases, the size of the optimal funnel
changes. This gives a relatively good indication of
how large each funnel is as the dimensionality in-
creases.

random points from the region (—5,5), which are the bounds
of the problem. We repeated this 1000 times and asked
the question: what percentage of points are in the optimal
funnel? A point is in the optimal funnel when:

N

s1-) (@i —m)? < g()

i=1

We created four multi-funnel functions based on the bias
they exhibit. As mentioned, in every case, we scaled the
optimal funnel by s; = 1.0 and added nothing to it (e.g.
w1 = 0). The second funnel in every problem (e.g. j =
2) has a weight of ws = 0.5 - N, where N is the problem
dimension. The weights for the third and fourth funnels on
the four-funnel problem were set to ws = ws = 0.625 - N.
These values create a sub-optimal solution that reflect a 8%-
10% difference from the global optima when considering the
range of all the local optima in the search space. On the
double-funnel instances, we scale the sub-optimal funnel by
s1 = 1.15, to create a more narrow optimal funnel, and by
s1 = 0.87, which renders the optimal funnel wider. The
four-funnel problems use s; = 1.08 and s1 = 0.9 to change
the funnel width. Again, these values were experimentally
chosen based how they change the relative size of the optimal
funnel.

Table 1 summarizes and labels each function based on
these parameter settings. For the remainder of this paper,
F2-S and F4-S refer to the two- and four-funnel problems
where the optimal funnel is more narrow than the other
funnels, which creates a smaller basin of attraction. F2-L
and F4-L correspond to the two- and four-funnel problems
where the optimal funnel is wider and the basin of attraction
is therefore larger.

Figure 4 shows the relative bias for each multi-funnel in-
stance as dimensionality increases. On both F2-L and F4-
L, the optimal funnel increases as dimensionality increases.
The size of the optimal funnel decreases on problems F2-S
and F4-S. These statistics give a relatively good indication of
how much volume each funnel occupies in the search space.
For example, in N = 50 dimensions, F2-S occupies about

Name Type Funnel (5) s; wj
F2-S double-funnel 1 1.0 0
2 0.87 0.5-N
F2-LL  double-funnel 1 1.0 0
2 1.15 05-N
F4-S four-funnel 1 1.0 0
2 0.9 05-N
3 09 0625-N
4 0.9 0.625-N
F4-L.  four-funnel 1 1.0 0
2 1.08 05-N
3 1.08 0.625- N
4 1.08 0.625-N

Table 1: The parameter settings for the six multi-
funnel test functions used in this paper. The values
s; and w; refer to the scale and weight applied to
the j'* funnel of the problem.

30% of the search space and F2-L occupies about 70% of
the search space. We show that this distinction greatly im-
pacts the effectiveness of search.

3. ALGORITHMS

It is commonly believed that population-based methods
are better at optimizing multimodal functions because they
tend to explore more of the fitness landscape before their
population converges to a compact and globally competi-
tive region search space. This approach is appealing be-
cause, by comparing the values of each candidate solution,
population-based algorithms have a better perspective of the
entire search space than a purely local search method. This
strategy has been reinforced with empirical studies.

In this paper, we describe and evaluate two evolution-
ary algorithms that utilize this approach: CHC, a non-
traditional genetic algorithm, and CMA-ES, an evolution
strategy with covariance matrix adaptation.

3.1 CHC

CHC [4] diverges from the traditional genetic algorithm
in that it selects two parents for recombination in a uniform
random way — there is no bias toward selecting better in-
dividuals. Instead, selective pressure is created using cross-
generational truncation selection: newly created offspring
must compete with the parent population for survival.

CHC also uses a modified version of uniform crossover,
where exactly half of the non-matching bits are exchanged.
The children under this scheme are always the same maximal
Hamming distance from both parents. Further steps are
taken to ensure that parents are not allowed to cross unless
they are sufficiently different. Eshelman refers to this as
incest prevention [4]. Initially, two strings must be different
by at least L/4 bits, where L is the length of an individuals
string. This difference threshold decreases by 1 each time
crossover fails to produce an improving individual. This
means that over time, crossover may occur on strings that
are more similar. Eshelman states that incest prevention
coupled with a difference threshold enables CHC to perform
a coarse grain search initially, which preserves diversity, and
eventually resort to a more fine grain exploitive search.

No mutation is used to alter one generation to the next.
Instead, when the difference threshold decreases to zero,



CHC initiates a restart mechanism called cataclysmic mu-
tation, that re-initializes the entire population by randomly
flipping 35% of the bits of the best individual.

3.2 CMA-ES

The canonical evolution strategy is an iterative process
where a population of p distinct parents produce A offspring
based on mutation distributions around the parents. Inter-
mediate recombination creates a single parent based on the
average position of the current population. A (u, \) selection
strategy considers only the best p of the current population
for recombination.

An evolution strategy with Covariance Matriz Adapta-
tion, or CMA-ES, uses a covariance matrix to explicitly ro-
tate and scale the mutation distribution [7]. The orientation
and shape of the distribution are directly calculated based
on the evolution path and local information extracted from
large populations. Hansen and Ostermeier define the repro-
duction phase from generation g to generation g + 1 as:

ngH) _ <x>ig) + O.(Q)B(Q)D(Q)ZIEQJFU

where z](cgﬂ) are randomly generated from an N(0,I) dis-
tribution. This creates a set of base points that are rotated
and scaled by the eigenvectors (B(g)) and the square root
of the eigenvalues (D)) of the covariance matrix C. The
single global step size, a'(g)7 is calculated based on the length
of the evolution path. Finally, the points are translated to
center around <ax>,(f)7 the mean of the p best parents of the
population.

To compute covariance, CMA-ES uses a time dependent
portion of the evolution path. The evolution path updates
after each generation using a weighted sum of the current
path, p&g), and a vector that points from the mean of the u
best points in generation g to the mean of the p best points
in generation g+ 1. A principle components analysis on the
evolution path is used to update the mutation distribution.

When a larger population (\) is used, the best p indi-
viduals may help describe the topology around the mean of
the current generation [6]. This is called the rank-u update.
Hansen and Kern have empirically shown that CMA-ES per-
forms well on multi-modal problems when large populations
and rank-p updates are employed.

The distribution used by CMA-ES is initially isotropic.
As a result, the initial value of o is critical for exploration.
Hansen and Ostermeier suggest that the quality of solutions
found by CMA-ES using a small initial step-size are often
determined by the location of the starting point [7]. Auger
and Hansen suggest an initial step-size that is half of the
constrained region [1].

4. EMPIRICAL RESULTS

The goal in this section is to understand how global struc-
ture affects the algorithms described in the previous section.
This is not meant to be a competition between algorithms in
order to identify which strategy is the most effective. In fact,
our results with respect to relative algorithm performance
should not be interpreted too strongly because algorithm-
and function-specific parameter settings can easily change
their performance rank. We are also aware that the local
optima in our problem are separable and symmetric, and
unrealistic feature that CHC exploits. Instead, we are show-
ing that both algorithms are affected by global structure. We

provide empirical evidence that suggests that, as dimension-
ality increases, global structure alone can cause both of these
algorithms to fail.

We evaluated CMA-ES and CHC on each test function
from N = 10 to 50 dimensions. Our primary goal is to esti-
mate the probability that an algorithm will find the optimal
solution. We estimate this by running 100 trials of each al-
gorithm and measuring the proportion of trials that found
the center of the optimal funnel.

Most evolutionary algorithms stop when they have reached
a predetermined number of evaluations. For example, al-
though CHC undergoes cataclysmic mutation when the di-
versity of its population is too homogeneous, it will con-
tinue to do so until it has reached the maximum number
of evaluations. CMA-ES, on the other hand, has well de-
fined stopping criteria such that it may terminate before
using the maximum allowable evaluations. To make our
comparisons fair, we added random restarts to CMA-ES.
Each algorithm in our comparison ran for exactly 15,000V
evaluations, where NN is the problem size. This is a sufficient
number of trials to allow each algorithm to converge at least
once per trial.

Every search algorithm has a set of control variables that
determine its behavior. Typically, CHC uses a population
size of 50, regardless of dimensionality. We also tested a
version of CHC with a population size of 100. The bit-
precision is usually set to 10 or 20 bits. A higher precision
search will tend to restart less often because the difference
threshold that controls the restart mechanism is based on
the string length. We encoded each parameter using 20 bits.

The default parameters for CMA-ES are also robust. The
value of the initial step-size is usually oo = (U —L)/2, where
L and U are the lower and upper bounds of the constrained
search space. Since our problems are bound between (—5, 5),
this corresponds to a step-size of 09 = 5. Increasing the pop-
ulation size has also been shown to increase the performance
of CMA on multimodal functions [5, 1]. We ran CMA-ES
using three population sizes: A = 4 + |3log(N)]| (the de-
fault), A = 5N, and A = 10N.

4.1 Perspective

In order to assess how the multiple funnels affect these al-
gorithms, we ran each algorithm on Rastrigin’s single-funnel
function. We used the same amplitude that our multi-funnel
problems used, A = 7, and shifted the optimum to the value
of 1 = 2.5 in every dimension. No weight was added (e.g.
wy = 0) and no additional scaling was used (e.g. s1 = 1).
The exact form of our modified version Rastrigin single-
funnel function, F1, is:

N
F1=> (x; —25)> = 7- (cos2m(z; — 2.5) + 1)
i=1

Figure 5 shows the number of times each algorithm was
successful as dimensionality increases. CMA-ES performed
the best with the largest population sizes, A = 10N being
the most effective. CHC using a population size of 50 was
more effective than CHC utilizing the larger population size
of 100. Both of these results are consistent with previously
reported behavior [5, 11].

Given the same precision, CHC will restart more frequently
using a smaller population, but the restarts are not random.
Cataclysmic mutation initializes the new population by al-
tering 35% of the best individual. Although any single bit
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Figure 5: Success rate as dimensionality increase on
the modified Rastrigin (single-funnel) function.

may result in a change that is large or small in Euclidean
space, the best individuals of the new population are likely
to be near the best individual. This means that CHC with
a small population size is converging quickly and restarting
locally.

On the other hand, larger populations are often more ef-
fective for CMA-ES on multimodal problems. Smaller pop-
ulation may be more efficient, in terms of evaluation calls,
but also tend to get stuck in local optima more frequently.

The main goal here is to establish a reference point. We
observe that both CHC and CMA-ES solve this problem
more than 80% of the time, regardless of dimension.

4.2 Multi-funnel Results

What happens to the success rates of these algorithms
when additional funnels are added to the search space? The
success rates as a function of dimensionality for each multi-
funnel problem are displayed in Figure 6. The most striking
feature is the rapid decrease in each algorithm’s ability to
locate the global optima on problems where the optimal fun-
nel occupies a smaller volume in the search space. In every
problem where the optimal funnel’s basin of attraction is
smaller (F2-S and F4-S), none of the success rates are above
10%. This is especially disturbing on the double-funnel in-
stance, F2-S, since we know that the optimal funnel occupies
approximately 30% of the search space. This is hardly like
searching for a needle in a haystack. When the optimal fun-
nel has a larger basin of attraction than the other funnels
(F2-L,F4-L), the affect on performance compared to each
algorithm’s behavior on F1 is less noticeable.

The optimal funnel’s volume in the search space does not
appear to be the main problem. For example, F4-L is ap-
proximately 40% of the search space, yet neither algorithm
appears to struggle with this problem. This implies that the
relative size of each funnel’s basin of attraction may be more
important that the actual size of the optimal funnel’s basin
of attraction. The remainder of this paper focuses on why
these algorithms perform poorly—and even fail—when the
optimal funnel occupies a small portion of the search space.

4.3 Understanding Exploration

There are several reasons why an algorithm may fail to
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Figure 6: Success rates on the multi-funnel Rastri-
gin function. When the optimal funnel has a large
basin of attraction (F2-L and F4-L), both CHC and
CMA-ES perform well. However, when the optimal
funnel is more narrow, resulting in a small basin
of attraction (F2-S and F4-S), the probability that
each algorithm finds the optimal solution noticeably
decreases.

find the global optima, but the most common explanation
is that it has converged to a local optimum. Of course,
on multi-funnel landscapes, the local optimum may be in
any funnel. Given the success rates for each algorithm on
F1, F2-L. and F4-L, we believe that the local optima in the
problem are not the most detrimental feature.

We conjecture that when the optimal funnel is narrow,
meaning it occupies a relatively small portion of the search
space, exploration tends toward the funnel with the largest
basin of attraction, relative to the others, and not the funnel
that is the deepest.

If our conjecture is correct, we would expect that, on av-
erage, when search is failing to locate the global optima,
it is getting stuck in a local optimum that is in the larger
funnel. We measured the proportion of the population that
was in the optimal funnel when the most effective solution
was found. In other words, for each of the 100 trials, we
computed the proportion of the population that was in the
optimal funnel at the time when the best solutions was en-



countered. These proportions are very close to either 1 or
0, since the entire population is usually in a single funnel
when it converges.

We found that in 50 dimensions, all of the trials for CMA-
ES converge to the largest funnel on F2-S and F4-S. The
results for CHC are less pronounced; occasionally (about
3% of the trials) CHC found the optimal funnel. However,
these number still suggest that CHC is biased toward the
size of the funnel, not its depth.

The size of the population affects these results. In both
CHC and CMA-ES, larger populations “pull” the distribu-
tions into the larger funnels more often. The CMA-ES re-
sults using a population size of A = 5N tend to get stuck
in the larger funnel less than the results reported in Figure
6. Unfortunately, smaller populations also get stuck in local
optima more frequently. The larger population size of 100
for CHC get stuck in the largest funnel more often than the
smaller population size of 50 shown in Figure 6.

We can look at this another way. There are really only
two characteristics that make this problem difficult: global
structure and local optima. We can peel back different lay-
ers of difficulty to better understand which characteristic is
having the greatest impact on these algorithms.

4.4 Testing a Simple Multi-sphere

When we remove the cosine term from each function, we
are left with the simple underlying global structure. Recall
that the global structure is:

N
g(%) = min < w4550 Y (@i — Mi,j)2>

i=1
We label these new test cases G2-L, G2-S, G4-L, and G4-S
to avoid confusion with those perturbed by additional local
optima. We stress that these four functions are incredibly
simple; G2-L and G2-S have only two local optima in the
search space; G4-L and G4-S have only four. Furthermore,
each local optimum is a quadratic sphere—equally scaled,
symmetric, and separable. We emphasize that a wide funnel,
which created a larger basin of attraction, can now be viewed
as a “wide” local optimum. The basin of attraction now
refers to the local optima in the space not the funnel.

We ran each algorithm on these test functions with the hy-
pothesis that if global structure was really the main detri-
mental feature, we would see results similar to those pre-
sented in Figure 6. Since we have decreased the complexity
of our functions, we allowed only 5000 - N evaluations per
trial instead of 15,000 - N evaluations used previously.

Figure 7 displays the success rates for these simple sur-
faces as a function of dimensionality. There is a close re-
semblance to the success rates given in Figure 6. The G2-S
results are perhaps the most revealing. In 50 dimensions,
the best solution has a basin of attraction that is roughly
30% of the entire search space and both algorithms only find
this solution less than 5% of the time. A simple local search
algorithm would, in expectation, find the best solution 30%
of the time without random restarts.

One simple conclusion here is that, on difficult multi-
funnel problems, exploration is more biased toward the size
of the funnel and not the depth of the funnel. That is, too
much exploration appears to “pull” search into the largest
funnel, although it may not be the deepest (e.g. the funnel
containing the global optimum).
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Figure 7: Success rates on the quadratic global
structure. There are only two local optima on G2-L
and G2-S and only four local optima on G4-L and
G4-S.

4.5 Limiting exploration

The most difficult Lennard-Jones multi-funnel problems
are solved by a Metropolis-type local search algorithm that
operates on the local optima of the search space rather than
the actual fitness function. This strategy is effective be-
cause it does not explore the entire search space, but rather
exploits a single funnel at a time. By quickly comparing
the best solution in each funnel, it is more adept to solving
multi-funnel problems. This seems to indicate that the best
global search methods for multi-funnel problems explore and
exploit on a local, not global, level.

In the spirit of this idea, we tested a rather non-intuitive
initialization of CMA-ES for multimodal landscapes. In-
stead of starting with the default initial step-size that has
been shown to be effective on many single-funnel surfaces,
we initialized o with a much smaller value. Specifically, we
set 0 = 5% of the search space domain as opposed to the
standard default value of 50%. We continued using the most
effective population size of A = 10N in order to make our re-
sults more comparable. This configuration will not explore
the entire search space, because of the small step-size, yet
will hopefully escape the local optima that exist within each
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Figure 8: The results of CMA-ES initialized with
a small step-size. The performance of this strategy
is much more closely tied to the funnel size (gray
lines).

funnel because it is using a larger population. The results
are displayed in 8.

Surprisingly, limiting exploration is a much more effective
strategy when the optimal basin of attraction occupies less
volume in the search space. The results in Figure 8 are more
tightly correlated to the size of the funnel (shown as a gray
line). The success rates, compared to CMA-ES using the
larger initial step-size, decrease when the optimal funnel is
relatively large, but substantially improve when the optimal
funnel is small. The highs are not as high, but the lows are
still respectable.

This highlights one drawback to this method; the effec-
tiveness of exploring funnels is limited to problems that con-
tain relatively few funnels. That is, “local search methods”
rely on several restarts in order to compare the best solu-
tions that exist within each funnel.

5. DISCUSSION AND CONCLUSIONS

Global structure can clearly impact the performance of
evolutionary optimization. When the optimal funnel is pro-
portionally smaller than other funnels in the search space,
the success rates for CHC and CMA-ES decrease dramati-
cally. This phenomena even occurs on a simple multi-sphere
function where exploration tends to pull search towards the
local optima with larger basins of attraction. We believe
these results will generalize to other algorithms as well. On
a more limited basis, we have also tested Differential Evolu-
tion, but didn’t report these results because DE failed on all
our higher dimension test functions, regardless of problem
structure.

Parameter settings can have a strong impact on empirical
results. We intentionally created difficult multi-funnel prob-
lems to understand how global structure impacts search.
Exploring how different weights (w;) and scaling (s;) val-
ues change our results may lead to a better understanding
of how sensitive search is to bias in funnel depth and size.
We found that even a small decrease in funnel size still re-
sulted in low success rates.

Exploring the search space first, to gain a global perspec-

tive, before exploiting a particular region may be an effective
strategy for “big valley”, single-funnel problems. But as a
general global optimization technique in high dimensions,
the effectiveness of exploration may say more about our test
functions than it does about the the effectiveness of this
strategy. More attention is needed in this area.

This work supports an ongoing awareness that successful
low-dimensional search strategies, such as exploration, are
not always the best techniques in high dimensional space.
Changing the way we view how exploration is affected by
global structure —and implementing strategies that reflect
this new philosophy—may expand the role that evolutionary
algorithms play within the global optimization community.
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