
Temperature and pressure dependence
kα has a very small pressure dependence;
on the contrary, the high and zero pressure
kβ differs by two orders of magnitude. In
both cases, our calculations are in good
agreement with the available low
temperature measurements; however,
there are significant discrepancies
between the high temperature ab initio
calculations and estimates.
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Calculation of rate coefficients
Rate coefficients are calculated using the eigenvalue-eigenvector based solution
of the master equation, which can be given in the following form:
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Potential energy surfaces of reactions (α) and (β)
Geometries and frequencies were computed at the B3LYP/6-311++G(d,p) level of
theory. Single point energies were calculated with the RQCISD(T) method using
cc-pVnZ basis set, n = {T,Q}, extrapolated to the infinite basis set.

Introduction
Ethanol is becoming an increasingly important component in fuel blends for
automotive engines, in fact many countries have introduced ethanol as a
compulsory component of gasoline. Understanding the low temperature and high
pressure ignition properties of ethanol is crucial, especially for new engine
technologies relying on chemical kinetics to time the ignition.

Stationary points on the α-hydroxyethyl + O2 surface

Aim
Our aim was to determine the bimolecular rate coefficient for reactions of the α-
and β-hydroxyethyl radicals with oxygen in the ignition regime, as well as to
characterize the product channels using ab initio methods.

CH3CHOH + O2  Products (α)
CH2CH2OH + O2  Products (β)

As a further development, experiments looking at these reactions will be carried
out in a high-pressure cell designed specifically for this purpose.

Experimental setup to study the reactions

The entrance channels of both reactions
are barrierless. The E,J-resolved number
of states is calculated variationally using
the direct variable reaction coordinate
transition state theory (VRC-TST). The
distance between the radical C atom and
the bonding O atom is taken as a reaction
coordinate and is allowed to change
between 2.5 and 7.0 Angstrom. The
potential energy is calculated "on the fly"
using CASPT2(5e,5o)/VDZ. Using aug-cc-
pVTZ basis set 1D potential correction is
applied to correct for inaccuracies related
to the basis set and the geometry
relaxation.
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where matrix G describes the chemical exchange between different wells and also
the E transfer during collisions, while |w(t) contains the unknown populations. The
phenomenological rate coefficient can be obtained from the eigenvalues out of
which Nwell+1 correspond to the chemically significant eigenmodes (CSE), and the
rest to the internal-energy relaxation eigenmodes (IERE).

Product distribution
In reaction (α) the bimolecular channel is the only significant channel at all of the
investigated pressures and temperatures producing HO2 radical. In reaction (β)
both OH and HO2 radicals are produced, and the fraction of the bimolecular
channel drops with pressure.

Tunneling corrections are taken into account by asymmetric Eckart transmission
probabilities. Internal rotors are treated using the Pitzer-Gwinn approximations by
Fourier fits to the B3LYP potentials. For many of the radicals involved the internal
rotors are strongly coupled, such as in the case of the α-hydroxyethyl radical.

Eigenvalues
In the case of reaction (α) all three CSE contribute to the rate coefficient, while in
the case of reaction (β) above 500 K the fastest, and above 1000 K the second
fastest CSE merges in to the IERE continuum.
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Stationary points on the β-hydroxyethyl + O2 surface

Energy along the minimum energy path calculated with
various methods for the α-hydroxyethyl + O2 system

The CSEs as a function of temperature
for the α-hydroxyethyl + O2 system

The CSEs as a function of temperature
for the β-hydroxyethyl + O2 system

P(He) = 1 atm
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Pressure and temperature dependence of kβ
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High and zero pressure limit of kα (left) and kβ (right) and comparison to literature values.
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Relative yields of bimolecular channels in reaction (α) (left) and (β) (right)

Possible radical sources:

CH3COCO(OC)CH3 CH3CHOH + CH3CO
XCH2CH2OH CH2CH2OH + X X = Cl, Br

Cl + CH3CH2OH CH2CH2OH + HCl
CH3CHOH + HCl

Rate coefficients and products will be
determined by detecting OH LIF signal.
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