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Introduction

Ethanol is becoming an increasingly important component in fuel blends for
automotive engines, In fact many countries have Iintroduced ethanol as a
compulsory component of gasoline. Understanding the low temperature and high
pressure ignition properties of ethanol is crucial, especially for new engine
technologies relying on chemical kinetics to time the ignition.

Eigenvalues

In the case of reaction (a) all three CSE contribute to the rate coefficient, while in
the case of reaction (5) above 500 K the fastest, and above 1000 K the second
fastest CSE merges in to the IERE continuum.
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Our aim was to determine the bimolecular rate coefficient for reactions of the a- 3
and B-hydroxyethyl radicals with oxygen in the ignition regime, as well as to o
characterize the product channels using ab initio methods. “’T o
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Temperature and pressure dependence
k, has a very small pressure dependence; ol

on the contrary, the high and zero pressure T
kg differs by two orders of magnitude. In B

As a further development, experiments looking at these reactions will be carried
out in a high-pressure cell designed specifically for this purpose.
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Potential energy surfaces of reactions (a) and (f8)
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Calculation of rate coefficients
Rate coefficients are calculated using the eigenvalue-eigenvector based solution
of the master equation, which can be given in the following form:

dw(t))
dt

where matrix G describes the chemical exchange between different wells and also
the E transfer during collisions, while |w(f)) contains the unknown populations. The
phenomenological rate coefficient can be obtained from the eigenvalues out of
which N,*+1 correspond to the chemically significant eigenmodes (CSE), and the —— o

rest to the internal-energy relaxation eigenmodes (IERE). ol 2 i 601 Gy Sriom s o

High and zero pressure limit of k,, (left) and k; (right) and comparison to literature values.
® Thiswork, k , O This work, k Marinov [1], estimate, k < Miyoshi [2], PLP-MS, P = 2-7 Torr

collisionless’
4 Anastasi[3], PR-AS, P=1atm, Grotheer [4], DF-MS, P=0.8 Torr, A da Silva [5], ab initio, P = 100 atm,

A da Silva [5], ab initio, P = 0.001 atm

Product distribution
In reaction (a) the bimolecular channel is the only significant channel at all of the
investigated pressures and temperatures producing HO, radical. In reaction ()
both OH and HO, radicals are produced, and the fraction of the bimolecular
channel drops with pressure.
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The entrance channels of both reactons , 4o : g |
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the bonding O atom is taken as a reaction - or I Experimental setup to study the reactions
coordinate and is allowed to change cc-pVDZ, rigid ' o v | Sossible radical
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pVTZ basis set 1D potential correction is
applied to correct for inaccuracies related
to the basis set and the geometry
relaxation.

Cl+ CH,CH,0H — CH,CH,OH + HCI

Energy along the minimum ener ath calculated with
Jy J gy P — > CH;CHOH + HCI

various methods for the a-hydroxyethyl + O, system

Rate coefficients and products will be
determined by detecting OH LIF signal.

Premixed gas mixture )
Photodiode

Tunneling corrections are taken into account by asymmetric Eckart transmission
probabilities. Internal rotors are treated using the Pitzer-Gwinn approximations by
Fourier fits to the B3LYP potentials. For many of the radicals involved the internal
rotors are strongly coupled, such as in the case of the a-hydroxyethyl radical.
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