

Application of Ewald summation to long-range dispersion forces

Pieter J. in 't Veld, **Ahmed E. Ismail**, and Gary S.
Grest

Sandia National Laboratories

Motivation

- Bulk simulations usually yield good results when cutoffs are large enough

Motivation

- Bulk simulations generally yield adequate results when sufficiently large cutoffs are used
 - Tail corrections sufficient when cutoff r_c is large enough that $g(r) \sim 1$ for $r > r_c$
- Interfacial systems don't behave the same way
 - Density cannot be corrected
 - Surface tensions can be corrected, but accurate only if density is correct

Methodology

- Ewald summation methods divide space into two regions:
 - A local neighborhood around a charge summed in real space
 - Remaining charges summed in reciprocal space
- Traditionally applied to $1/r$ potentials
 - Can be extended to other long-range potentials
 - $1/r^3$ (dipole)
 - $1/r^6$ (dispersion)

Ewald sums

- Mathematically, Ewald sums are broken up using a switching function ϕ_m :

$$S_m = \sum_{i,j,L} \frac{A_{ij} \phi_m(\mathbf{r}_i - \mathbf{r}_j - \mathbf{R}_L)}{|\mathbf{r}_i - \mathbf{r}_j - \mathbf{R}_L|^m} + \sum_{i,j,L} \frac{A_{ij} [1 - \phi_m(\mathbf{r}_i - \mathbf{r}_j - \mathbf{R}_L)]}{|\mathbf{r}_i - \mathbf{r}_j - \mathbf{R}_L|^m}$$

- For $m = 1$: $\phi_1 = \text{erfc}(r/\eta)$

- For $m = 6$:

$$\phi_6(r) = \left(1 + \left(\frac{r}{\eta} \right)^2 + \frac{1}{2} \left(\frac{r}{\eta} \right)^4 \right) \exp \left(- \left(\frac{r}{\eta} \right)^2 \right)$$

- η defines the cutoff between real and reciprocal spaces (mainly affects performance, not accuracy)

Formulae for r^{-6} energy and forces

$$\begin{aligned} E_6 = & \frac{1}{2\eta^6} \sum_{L,i,j} B_{ij} \left(1 + a^2 + \frac{a^4}{2} \right) \frac{e^{-a^2}}{a^6} \\ & + \frac{\pi^{2/3}}{24V} \sum_{\mathbf{h} \neq \mathbf{0}} h^3 \left(\pi^{1/2} \operatorname{erfc}(b) + \left(\frac{1}{2b^3} - \frac{1}{b} \right) e^{-b^2} \right) \\ & \times S_6(\mathbf{h}) S_6(-\mathbf{h}) \\ & + \frac{\pi^{2/3}}{6V\eta^3} \sum_{i,j} B_{ij} - \frac{1}{12\eta^6} \sum_i B_{ii}, \end{aligned}$$

$$\begin{aligned} \mathbf{f}_{6,k} = & \frac{1}{\eta^{-8}} \sum_{L,j} B_{kj} (\mathbf{r}_k - \mathbf{r}_j - \mathbf{R}_L) (6a^{-8} + 6a^{-6} + 3a^{-4} + a^{-2}) \\ & + \frac{\pi^{2/3}}{12V} \operatorname{Im} \left(\sum_{\mathbf{h} \neq \mathbf{0}} i b_k \exp(-i\mathbf{h} \cdot \mathbf{r}_k) h^3 \left[\pi^{1/2} \operatorname{erfc}(b) + \left(\frac{1}{2b^3} - \frac{1}{b} \right) e^{-b^2} \right] S_6(\mathbf{h}) \mathbf{h} \right) \end{aligned}$$

Surface tension

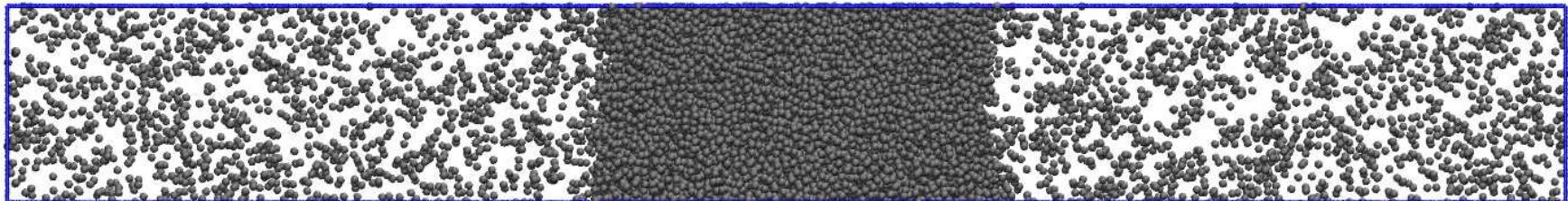
For systems with slab geometry:

$$\begin{aligned}\gamma &= \gamma_{sim} + \gamma_{tail} \\ \gamma_{sim} &= \frac{L_z}{2} \langle p_{\perp} - p_{\parallel} \rangle = \frac{L_z}{2} \left\langle p_z - \left(\frac{p_x + p_y}{2} \right) \right\rangle\end{aligned}$$

Tail correction for long-range dispersion forces:

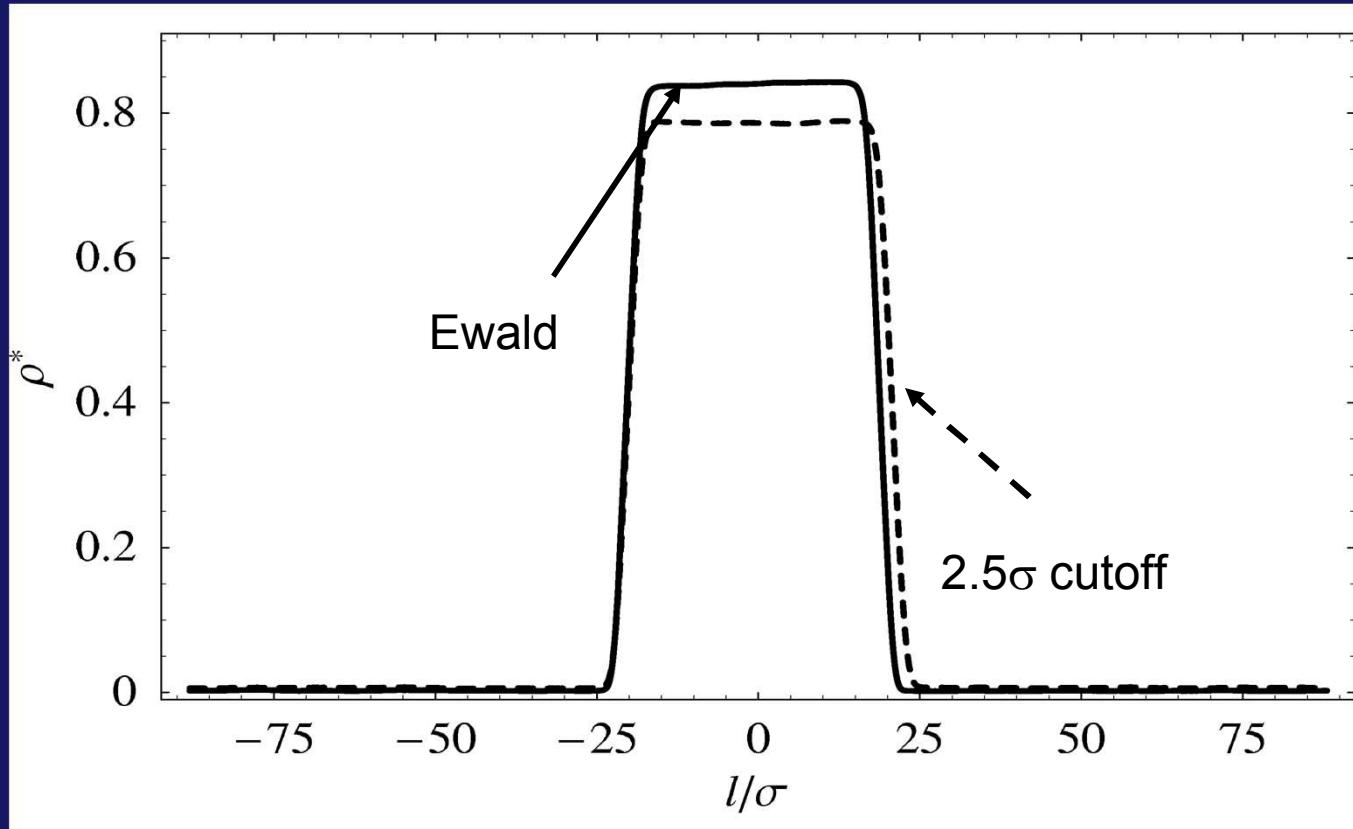
$$\gamma_{tail} = \frac{\pi}{2} \int_{-\infty}^{\infty} \int_{-1}^1 \int_{r_e}^{\infty} r^3 (1 - 3s^2) \frac{dU(r)}{dr} g(r) \times \\ \left(\rho(z) \rho(z - sr) - (\rho_G(z))^2 \right) dr ds dz.$$

Lennard-Jones simulations



- NVT simulations of 16,000 LJ atoms
- $T^* = 0.70, 0.85, 1.10$
- Timestep $\Delta t = 0.005\tau$
- Equilibration for 1250τ , sampling for 3750τ
- Long-range forces treated with 2.5σ , 5σ , or 7.5σ cutoffs, or Ewald summation

Lennard-Jones fluid: $T^* = 0.70$



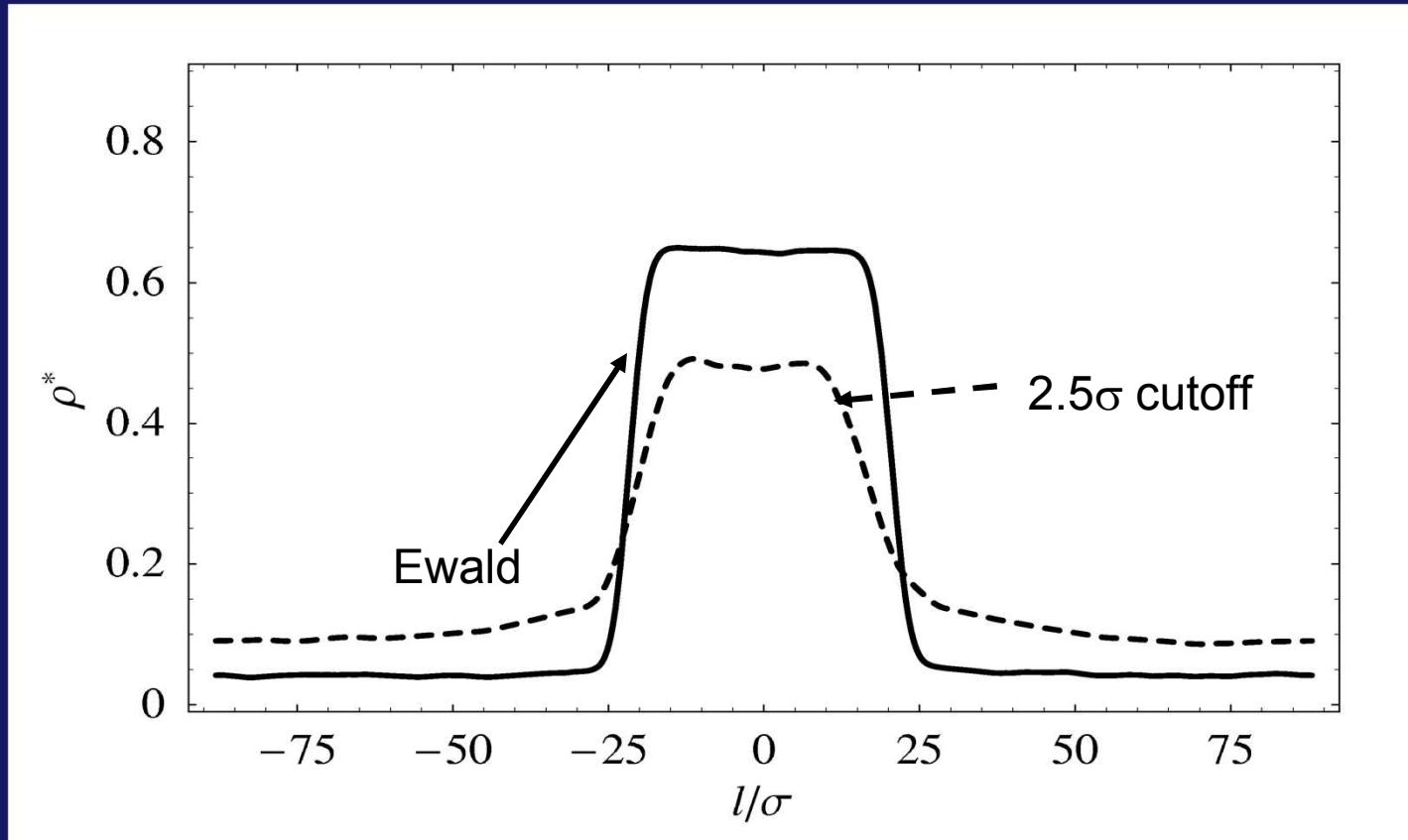
Far from critical point, Ewald and cutoff yield similar density profiles

Lennard-Jones fluid: $T^* = 0.85$



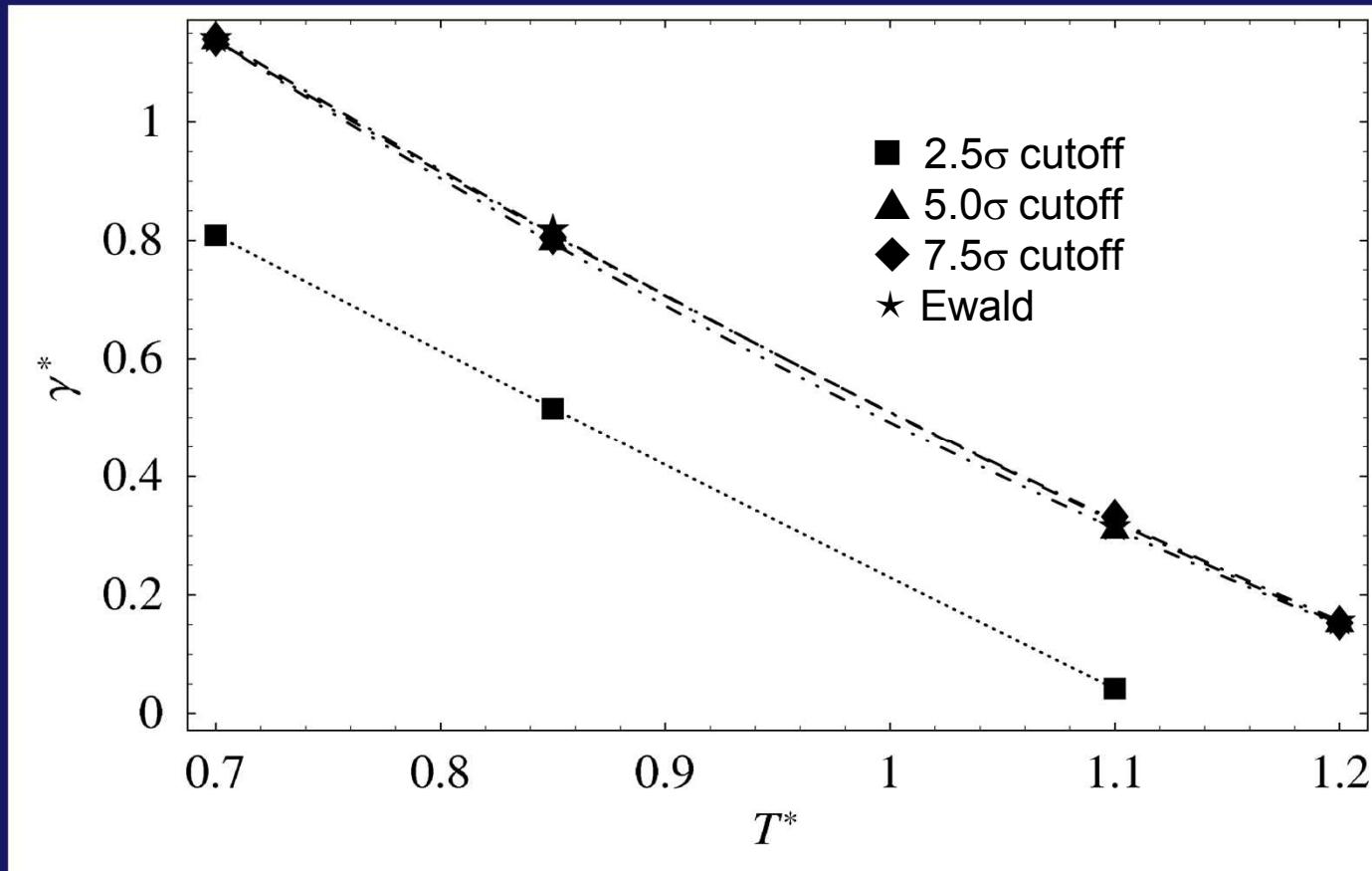
Closer to critical point, Ewald and cutoff results start to diverge

Lennard-Jones fluid: $T^* = 1.10$



Near critical point, Ewald summation needed for correct behavior

Lennard-Jones fluid: Surface tension

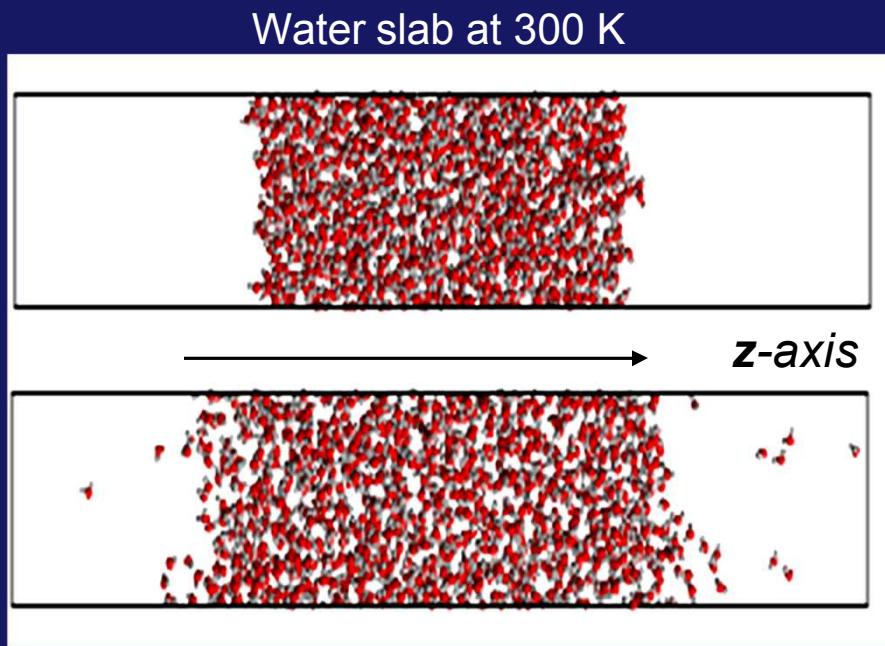


PPPM with $\geq 5\sigma$ cutoff needed to match Ewald results

Lennard-Jones fluid: Performance

T^*	Method	r_c (σ)	Time per timestep (ms)	
			$N_{particles} = 4000$	
			(4 procs)	(8 procs)
0.70	Cutoff	2.5	5.2	18.4
	Cutoff	5.0	30.4	40.6
	Cutoff	7.5	98.7	135.0
	Ewald	5.0	95.1	124.6
0.85	Cutoff	2.5	5.4	6.7
	Cutoff	5.0	33.1	37.8
	Cutoff	7.5	115.1	129.0
	Ewald	5.0	87.7	121.9
1.10	Cutoff	2.5	3.5	6.4
	Cutoff	5.0	25.0	35.9
	Cutoff	7.5	76.2	119.7
	Ewald	5.0	67.3	103.5

Water



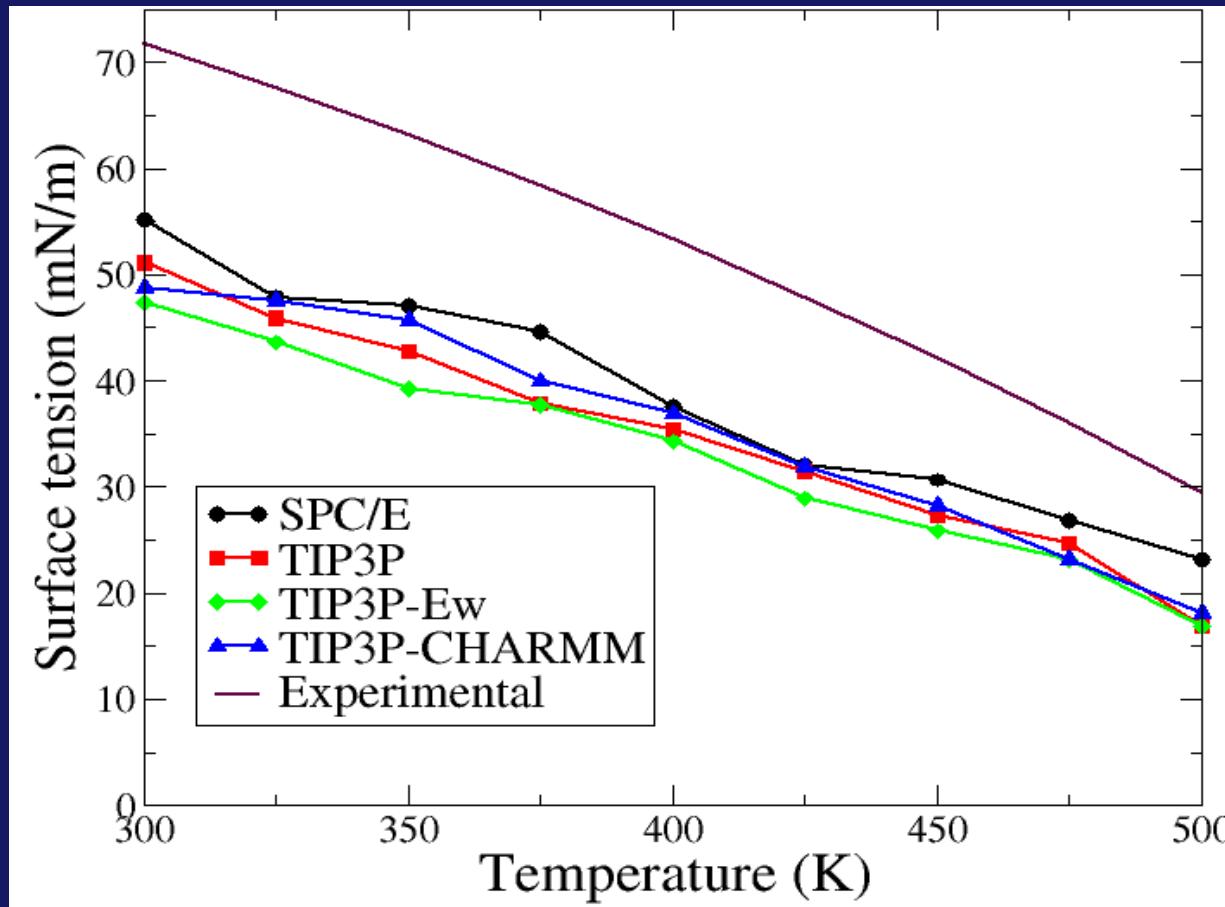
- SPC/E water model
- 2200-10,000 molecules
- $(36.5-77.4 \text{ \AA})^2 \times 150 \text{ \AA}$ box
- 10, 12, 16, or 20 \AA cutoff for LJ dispersion; 10, 12, or 16 \AA for Ewald summation
- 2 ns NVT MD simulations at 300 K or 400 K with 1 fs timesteps

Water: Surface tension

Dispersion cutoff	$\gamma = \gamma_{\text{sim}} + \gamma_{\text{tail}}$ (mN/m)	Ewald “cutoff”	$\gamma = \gamma_{\text{sim}}$ (mN/m)
10 Å	61.6	10 Å	61.8
12 Å	61.7	12 Å	61.1
16 Å	62.1	16 Å	60.5
20 Å	61.3	Exptl.	71.7

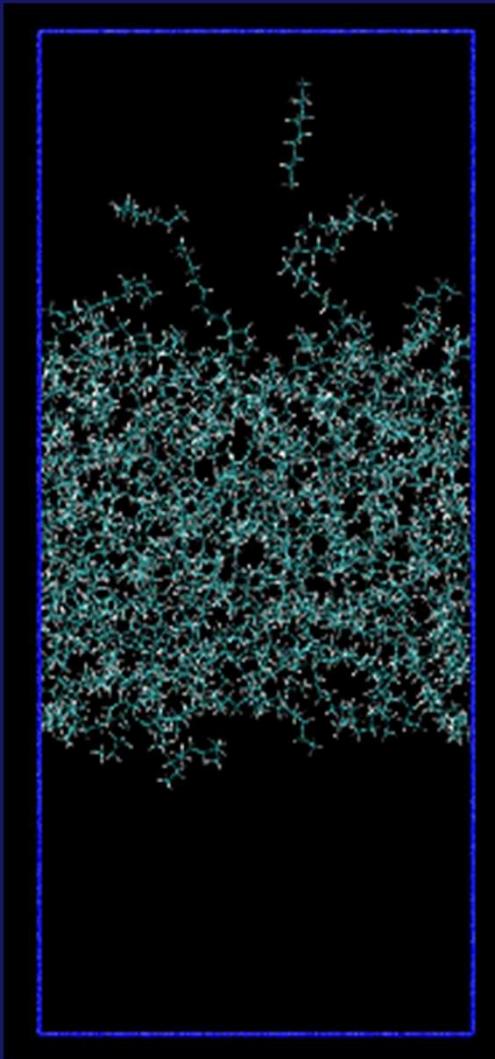
Effect of long-range $1/r$ dominates $1/r^6$ contribution

Surface tension of water



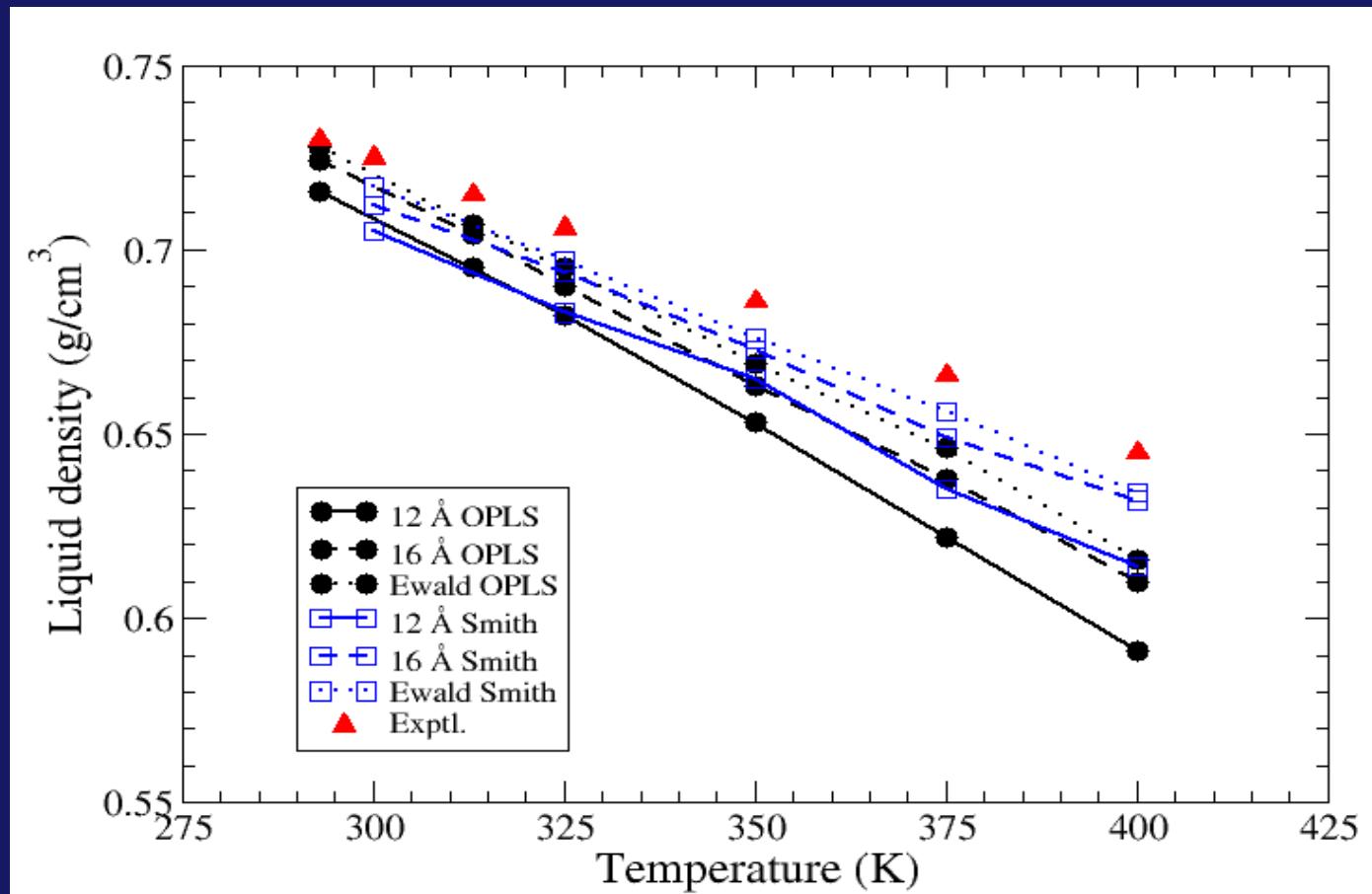
Disagreement with experiment a general feature of nonpolarizable models

Alkanes



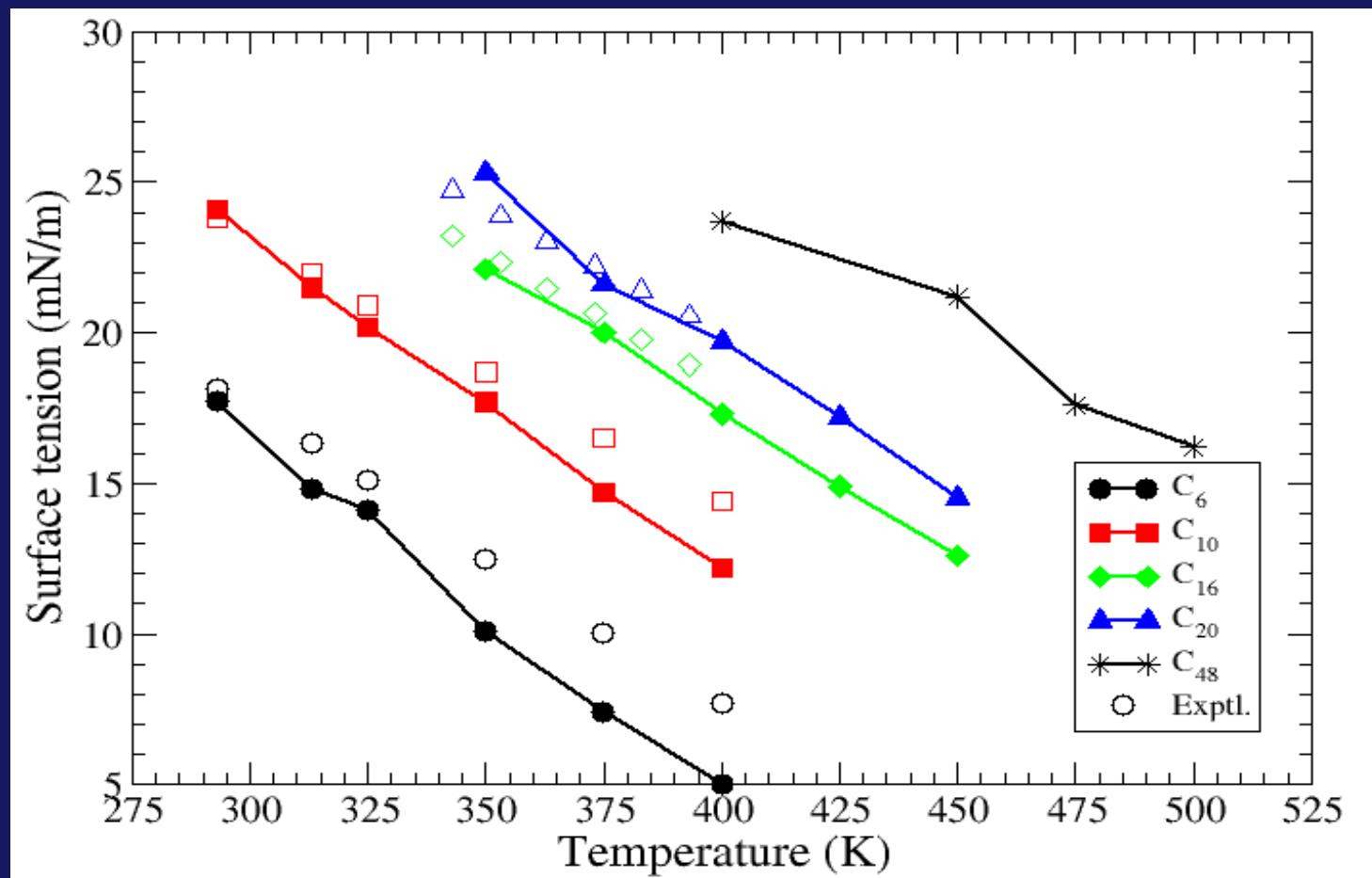
- C_6 , C_{10} , C_{16} , C_{20} , and C_{48} chains
- Two all-atom force fields
 - OPLS: charges, LJ non-bonded
 - Smith et al. (2005): no charges, Buckingham non-bonded
- NVT simulations between 298 K and 550 K
- Time step 1 fs; simulations between 5 ns and 15 ns
- Long-range forces use PPPM with 12 Å or 16 Å cutoff or Ewald

Alkane density



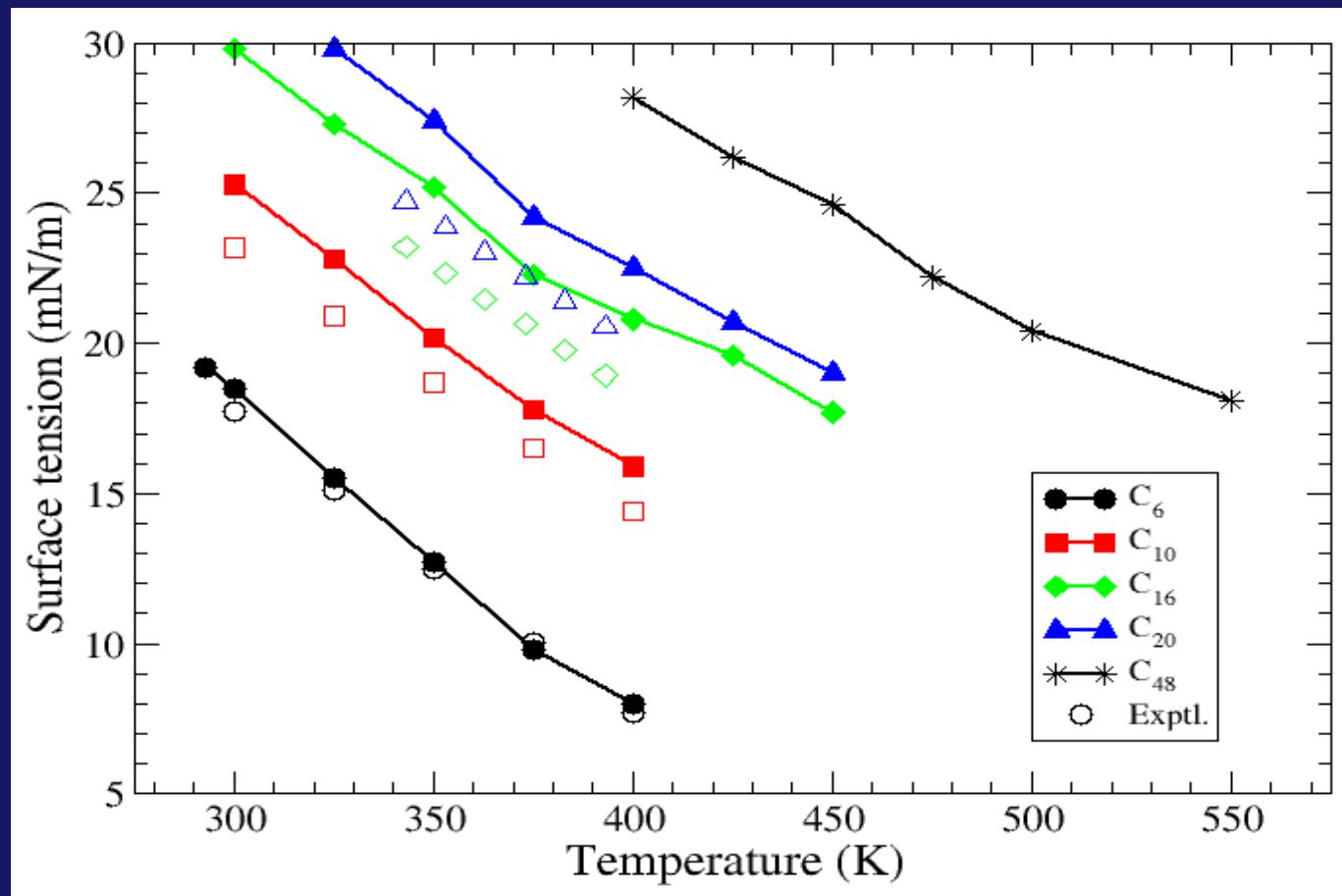
Ewald predicts density better than using large cutoffs

Alkane surface tension: OPLS FF



Good agreement at low temperatures using Ewald

Alkane surface tension: Smith FF



Good agreement at low MWs using Ewald

Conclusions

- Ewald summations of dispersion forces yield “true” results for a given pair potential
- The magnitude of long-range contributions increases with size of molecule
 - Increases need for long-range calculations
- Performance can be a factor, especially for dense systems
 - Is Ewald with a “moderate” cutoff better than brute force with a large cutoff?
 - Mesh-based implementations (PPPM, PME, etc.) can lead to improved speed without sacrificing accuracy

Acknowledgments

- Steve Plimpton (LAMMPS)
- Sandia Center for Integrated Nanotechnologies (CINT) for funding