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Machine Learning, With Ensembles

Traditional: Use 100% of training data to

build a sage.

Ensembles: Use randomized 100% of

training data to build an expert. Repeat

to build many experts. Vote them.

Sage sees all the data.

Each expert sees 2/3rds of the data.

The experts beat the sage[1]!
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“Bagging” is the Formal Name for This Method
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How Big An Ensemble Do You Need?

Don’t use fixed size ensembles. They will short-change you and deceive you.

Instead, stop when accuracy levels off.

Size of Ensemble

Accuracy
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Three ensemble methods,
as a function of ensemble size.

But how to measure accuracy? Don’t just use the training data.

Use a separate validation set? Sure, but they are rare and costly.

Out-of-bag (OOB) validation is easy and cheap.
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Every Classifier Lacks a Fraction of the Samples
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Every Sample Lacks a Fraction of the Classifiers!!

The classifiers that didn’t see the sample can be fairly used to test it.
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Sample 2 can be tested by E3 and E4; Sample 4 by E1, E2, E3 and E4.

Each sample can be tested by a substantial fraction of the classifiers.

So the over all accuracy is accumulated, one sample at a time.
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Accuracy Increases Erratically With Ensemble Size
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Can’t stop at first peak or plateau; accuracy curve must be smoothed.
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Smoothing and Selecting Via Local Windows

Three step algorithm for selecting
a stop point[2]:
1. Maintain a running average

over wsmall samples, to
smooth.

2. Track maximum accuracy
over windows of size wlarge

until it doesn’t increase.

3. Return size of ensemble that
first achieved that accuracy.

Note that OOB will over-estimate
ensemble size.
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So: Smoothed Maximum Accuracy is Effective . . .

. . . but theoretically unsatisfying.

Next Steps:

• Generate a menagerie of real curves; build intuition.

• Estimate parameters from the curve itself?

– Extract a measure of variability from the small ensemble data?

– Explicitly model the “noise”, the variation in accuracy?

• Consult with a trained 1D signal processor.
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