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Miniaturization of Analytical Capabilities

Goal:
*High Sensitivity
*Portable
*Reliable
Low Power
Handheld

Embedded

Courtesy of Ron Manginell and Matt Moorman
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Our Approach to Chemical Sensing
(MChemlab ™)

*Vast majority of sensors have limited selectivity (reacting to classes of analytes)

*To improve identification of chemical species and sensitivity, we use:
*Selective preconcentration
*Temporal separation (commercial GC or MEMS columns)
Sandia
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# Moving Beyond The SAW

Nanoparticle Sensor Background Ligands
: . <
* Mechanisms of transduction

— Adsorptive swelling (“Chemiresistor”) \
- Snow & Wohltjen Anal. Chem. 1998, 70, 2856-2859 Nanoparticle

— Dielectric modification to the nanoparticle capping layer
« Joseph et al., Sensors and Actuators B 98 (2004) 188-195

— Molecular electronic
 Sandia

Why use nanoparticle based sensors?
* Much easier to measure a change in resistance
« Consume less energy
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' Molecular Electronic Approach:

e

Nanoparticle

)

Conducting

Smart Chemiresistor (SCR)
Bridging Ligand

aE

Bridging Ligand :
Non-conducting

With Analyte

*Nanoparticles serve as mini-electrodes scaffolding O\
*HOMO LUMO gap altered changing conductivity
*Characterize analyte by measuring change in S K

resistance (low power)
*More specific response

This is an extension to the Chemiresistor developed by Snow & Wohltjen
Anal. Chem. 1998, 70, 2856-2859
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HOMO-LUMO Modifications

Homo/Lumeo
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Novel Nanoparticles

toluene
stearonitile
HAuCly > NC
NaBH,4
5 nm
R S NGRS e
We have accomplished the first NN R N S R

synthesis of stable nitrile capped R
nanoparticles by modification

of the Brust method. The nitrile
capping agent serves as a

sacrificial layer which may easily
be replaced by stronger

binding ligands (e.g. thiol, isonitrile
or diazonium groups).
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‘ Iterative Nanoparticle Ligand Assembly

Substrates Process

- Glass, Gold, Silicon + Synthesis of stable nitrile capped nanoparticles by
Nanoparticles modification of the Brust method

* Gold (5nm) * Piranha cleans and hydrates the surface

* Platinum (2nm) « Treat with tetrakisdimethylamino silane and react with a dithiol
Molecules * Ready for nanoparticle attachment

* phenylene ethynylene (PE) . ) .

. octanedithiol (ODT) * Tune resistance with each applied layer

«Automation was required for reproducibility

Sacrificial Cap\A

" N ' ¢ Repe

o Z

> — —at—

S

Step 1 m Step2
[ Au]

Au/DIH Pt/PE

Au/PE Pt/DIH Sandia
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Initial Liquid Phase Sensing Experiment

*Au nanoparticle film crosslinked with
nitrophenol phenylene ethynylene
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L — 11 B 5-4 after
4.00E-010 (- 11 B 5-4 exposed HOAC ;
— 11 B 5-4 exposed NH40OH O
< 2.00E-010 |-
H —
- Base [
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—
- n R R Acid R/Q\R
-6.00E-010 N T S S SN SRR Conjugated Cross Conjugated
3 2 1 . 1 2 3
Vbias (V)
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Resistance (ohm)

‘ Multiple Liquid Phase Exposures

3 Layer Au/ODT+3 Layers Au/Nitro

1.0E+08

1.0E+07

1.0E+06
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1.0E+04

1.0E+03

Sensor Test
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=9 %° .
" . 4.0E+04
s |
. A
m* 3.0E+04
e
e
2.0E+04
 Nitro: IDE2 HOAc
i = Nitro: IDE2 NH40OH
1.0E+04
0 5 10 15

Exposures Cycles

Acid Catalyzed Benzofuran Formation

Au-ODT Film: Swelling Test

+ IDE1: AcOH
= IDE1: NH40OH
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Initial Vapor Sensing of Dimethyl Methyl
Phosphonate (DMMP)

Nanoparticles Cross-linked with sensor molecule

2400 -
>
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©
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Time (sec)

*Films cross-linked sensing
molecule have greater
response to DMMP than ODT

control films

‘We see a specific response

% Signal Change

——Ch130Sec || *Deposited Au nanoparticle films
——Ch230Sec || cross-linked with sensing and
ch160Sec || control molecules
Ch2 60 Sec
—Ch190 sec *Films exposed to DMMP
—__ch290sec || preconcentrated for increasing
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——Ch2 120 Sec
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An Improved Approach

=) *Do to problems with stability, we
1 started assembling cross-linked films
in silica matrix

*We see both improved stability,
reproducibility and sensitivity

*Films as simple drop coated on to
IDE’s

Si(OEt),

« Silica Matrix
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— ) ' Typical SCR Response to DMMP
}- (0.1 yl DMMP in 1.0 mL CS2)

*GC operated using a split
*For 600 ppb of DMMP:
-_- Response: 5 pA
- Noise: 50 fA
100 - [ ] S/N: ~ 100
] TC: 100 ms
801 3 Bias: +10V
Q.
= DMMP LOD: XXX
g 604 g
. cs2 — || 3 \
DMMP: 600 ppb
20 - /60 " ::me (seec(: " "
i J N
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m ) i
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SCR Response to Different Analytes

TEOS+PE+NP
100000 -
10000 -
g 1000 - —e— Octane
7} —=— DMMP
% 100 —a&— Toluene
10
1 T T
1 10 100
Con (ul)
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A4

SCR Types

Comparing DMMP Sensitivity for Different

Concentration (ul)

—e— TEOS+NP

—=— TEOS+Mol+NP

—a— Mol+NP
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ZnO Nanowires

Reducing agent
Resistance 4

e-
Mechanisms of Resistive Oxide Sensors

+ Chemisorbed oxygen species on surface bind
conduction electrons
* Reducing species react with oxygen and releases

Sandia
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Structured Sensors

Assembled on interdigitated electrodes with 2 um gaps
‘Deposition parameters 10 kHz, 10 Vac, 10 minutes
‘Densities ~ 1.5 rods / 10 um

Laboratories



'
N 4 ' Sensitivity of Random ZnO NW Network
' Deposited on 8 ym Gap

Ethanol exposure Toluene and Ethanol exposure
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System Integration of SCR:
Micro-Preconcentrator (3D PC)

i, Jo— '/0\?5!/ AN .Lo =
Absorbent covalently e
bonded to silica matrix o Sio
N _/ S‘i e
v \
[}
\T s Hydrophobic
oS CFs FiC ‘ﬂ/\ CF3 groups
{ e g e~
\Si Ko< \"\‘o /0
oA
i\s' CFy / QH
\ o--0. 04 =9
/ cr b IN Si,
Q VA L
, 0\ I~ §i—0
= Si .
Soeede AT
am Spot : . 4 ‘,,/'_ _ Strong hydrogen
“ ‘!'W.‘SA4'°1 5/4/04 o bonding interactions

*Micro PC consist of conductive heater supported by thin membrane
*Coated with base-catalyzed Sol-Gel
*Low thermal mass enables rapid heating producing sharp analyte pulse

*By using a PC and appropriate coating, the PC can share
the burden of selectivity with the sensor @ -
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‘ SCR Packaging (Minimum Dead Volume)

Two quartz
nanoparticle IDT
chips covered by a
flow lid

0.5 mm thick
glass with 685
micron capillary
holes
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SCR and FID Comparison Using
Commercial CG column
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'4 ’ ' SCR and FID Comparison Using
} Commercial CG column and PC
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';,7
P 4 Selective Preconcentration
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g
#andia Micro Gas Analyzer — DARPA Phase I

CWA simulants analyzed in < 4 sec

~ O gl | \\»

£

8

-
——
. s

Preconcentrator

DEMP
DMMP

Chemiresistor signal, Volts
o
S
1

1.015 sec

— R
2 3 4 5 6
Elution time, sec

-

Nanoparticle chemiresistor |

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia
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i FAR “Jitter test” and Interferant Tests at MIT-LL

Acquired >11,300 chromatograms

074 Blank sample, 60Hz filtered . ]
T e — using complete system (micro PC,
o 06- micro GC, micro detector)
g -
c_g 0.5
S 0.05
g 0-4‘_% (DMMP + DEMP) 60Hz filtered . K{(DMMP+DEMP) + d] - Blank
E 0.3 Y ‘ 0.04
QE_, PCon PC off é’
S o024 t=0 t=1.015 sec 2
] \ \ = 0.03-
0.1 c
R .
b (7]
0.0 T T T T T T T -§ 0.02 DEMP
1 0 1 2 3 4 5 6 % DMMP
Elution time, sec Q
. £ 0014
‘DMMP + DEMP delivered by MIT-LL §
sample manifold.
-Also completed 2 full interferent %907 oC of
matrices I 1.015 sec
-Still working on data reduction -0.01 — T T T T T
-1 0 1 2 3 4 5 6

Elution time, sec

*The bad news: 80 sec PC load at 1500 ppb @ Sandia
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g '
| “’ Conclusions

 Enhanced selectivity of SCR using electronically
active cross-linking ligands

 When packaged in low dead-volume cells, typical
film’s LOD detection was measured the single
ppb range

* Developed films that are stable under constant
bias conditions for weeks

* Integrated films with micro-PC and MEMS GC
columns
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Conclusions

\"

* Developed a novel nanoparticle synthesis

» Developed an array of unique chemistries for both functionalization
and sensing

* Designed and fabricated a robotic preparation system

* Observed a linear drop in resistance for layer-by-layer assemblies
for different combinations of nanoparticles and crosslinker ligands

* Observed a change in film resistance due to modification in
conductance of the crosslinking molecules

* Observed vapor detection of preconcentrated DMMP

* Developed several nanogap fabrication methods
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} Components Required for Detector

* Organic Sensing Molecules
— Conjugated phenylene ethynylene

==

* Metal Nanoparticles
— Sacrificial ligands to stabilize in solution
 Nano/Micro Gaps
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Sensing Degradation

One Possible Explanation for Cessation of Switching

Acid catalyzed benzofuran formation

=4 .

|
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Moving Beyond The SAW

A

Why use nanoparticle based sensors?

* Much easier to measure a change in resistance ffgﬂlfgf
- Consume less energy N

Nanoparticle
|

Nanoparticle Sensor Background
* Mechanisms of transduction

— Adsorptive swelling (“Chemiresistor”)
* Snow & Wohltjen Anal. Chem. 1998, 70, 2856-2859

— Dielectric modification to the nanoparticle capping layer
» Joseph et al., Sensors and Actuators B 98 (2004) 188-195
@ Sandia
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Molecular Lengths

Structure
meta-phenylene ethynylene diisocyanide
Boc protected nitrophenol meta-phenylene ethynylene diithiol

1,8-octanedithiol

Au-S bond
Pt-S bond
RNC-Au*

RNC-Pt**

*Journal of the Chemical Society, Dalton Transactions (2001), (8), 1196-1200
**Organometallics (2003), 22(16), 3316-3319.

Length/nm
1.88
1.72

1.17

0.23
0.23
0.2

0.11
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\

MChemlab™ - Detection

Each SAW device consists of

an mput and output interdigital

transducer patterned on a
piezoelectric substrate.

Response

200 400 600 800 1000 1200 1400
Time (sec)
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Ligands and Nanoparticles

Sacrificial Cap . YO T ———

SH  sH N\ | “\ / g Step 3
(IDH (|)H HS/\/\Si(OMe)3 ? § HS/\/\/\/\/SH ( )
glass » —Si—O—Si— - )

cl) cl) Repeat
Stepl |1 | Step2 58 2&3 ¢ )

glass
glass glass
Au/PE PYDIH
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Cross-Sectional SEM

32nm 41nm

Au Film
Au electrode + Glass

Glass Pt film Pt Film

300 nm s

au_4 5KV 04216
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Robotic Preparation

1.6E-07
+ average Pt-mPE diisocy

etal., J. Phys. Chem. B 2003, 107, 7406-7413
Observed a linear increase in 1/R;

ilm

et al., J. Mater. Chem., 2002, 12, 1222-1230
Observed a alternating current with each
additional layer

1/R (ohms)
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Initial Low Temperature Studies

4.0E-07

3.0E-07 |

N NC N7

1.0E+12 N
—~ 1.0E+11 | ¢
E .
S 1.0E+10
o 1.0E+09 ¢
o *
E 1.0E+08 | ‘. .
L 10E+07 teu.
2 e
o 10E+06
1.0E+05
0 100 200 300 400
Temp (K)
0
‘ ¢ IDE2 Conductance‘
= -2
Z [—EA
4 —28B8 | kT
(8]
< oC e e
o 5 | O
é -8 *te . .
b .,
< 10 - * .
-12
3 5 7 9 11
10T K]

1.5E-10

1.0E-10

5.0E-11

0.0E+00

Current (A)

-5.0E-11

-1.0E-10

-1.5E-10

+ 40K
m4 K

-1.5

-1.0

-0.5

0.0
Vbias (V)

0.5 1.0 1.5

Evans et al., J. Mater. Chem., 2000, 10, 183
Joseph et al., J. Phys. Chem. B 2003, 107, 7406-7413
Wuelfing et al., J. Am. Chem. Soc. 2000, 122, 11465-72
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Gold Nanogaps

Mo1lRam@ Post Au evaP. ' Mo lRamB® Post Au ewvaP.

1um x206, 0880 Sl

Z5kU 8.Z2um xB806.06808
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Gold Nanogap Fabrication
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} Organic Molecules

* Number of different functionalization chemistries available
to use including:
— Diazonium salt NO,
— Thiol B = /=
— Nitrile N/ \ Y/
— Amine Fag-F
I b |§@ BocO \\
— Isonitrile F
« Conjugated “backbone”

» Electron deficient phenol

F
Ful F
® 70

W

*Synthesized by Dirk and Wheeler
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Ligands and Nanoparticles

Sacrificial Cap 5 YO OEOOECO000
SH SH SH sH
§s 4% ¢ Y
HS gy Repeat ( )
Au > —— -
C )
Step 1 i3 95s Step 2 1&2 ( )
Au 179 four
Au times Au

Stearonitile capped Au nanoparticles
were assembled in a stepwise fashion
onto a Au electrode.

2.5¢ 4

Height: 26 nm Height: 45.5 nm

3e4 4e 4 5e4

10000 1.5¢4 2c4

[Number of events
[Number of events|

10000 2e4
5000

(U 20 40 60 80

ihll- .|i||| | |“||I ||||||| ........
20 40 60 80 100 120 140 160 Sandia
Topo [nm] Naﬁﬂlla| -
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Robotic Assembly

*The substrate is *Arinse stage removes *The sample holder has
dipped into the excess nanoparticles the capability to
nanoparticle solution. and ligands. interface with electrodes

National _
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Characterization of Assembled Films

Nanoparticles: Au
Linker: ODT
Cycles: 10

Sample IDE - Au Functionalized with TDMAS

1.00E+10 -
1.00E+09 -

1.00E+08 -

1.00E+07

1.00E+06 -

Resistance (Ohms)

1.00E+05

1.00E+04
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Average Resistance (ohms)

Ligand-Nanoparticle Combinations

Cycle vs. Average Resistance

2 nm Pt Nanoparticles

/»\\//A\N//\\v//\\//Sth
Pt S

1.0E+10 ¢ /

L. / O
1.0E+09
1.0E+08 & ST e e CN O N\

2 _-Pt N

DEEE - 8
1.0E+07 ¢ - = e .

’ NC Pt
1.0E+06 [ \ O

o, ——
1.0E+05 e e oL, e \A“ CN O N
1.0E+04 \ O

g NC' Au
1.0E+03 ‘ ‘ ‘ \ Au'S S Au

4 6 8 10 12 14 16 18

Cycle 5 nm Au Nanoparticles
ey 82
o -26p kT E a4~ Zhang et al., Nanotechnology 2002, 13, 439
O e € dre rEol Neugebauer & Webb, J. Appl. Phys., 1962, 33, 74



Initial Vapor sensing of DMMP using a protected
phenol

Our initial observation during exposure to DMMP show:
*Protected phenol-Au films have dramatically increased conduction (molecular electronic effect)
«Control ODT-Au films have a slight decrease in conduction (swelling)
*Films response is rapid

210 second concentration of 7 ppm DMMP vapor of with Tenax PC using Boc
Protected Phenol Molecule as Ch 1 and Ch 2 and ODT as Ch 3 and Ch 4 both with
Au nanoparticles

110 -
0.01 —DI/I Ch 1
%0 - 001  ODTFilm —DI/I Ch 2
0.00 DI/ Ch 3
70 | & 180 200 220 240 260 DI/l Ch 4
% ;m -0.01 |
= = 001 |
2 )
= 50 0.02 ¢ Phenol Film
=2 -0.02 /
30 - -0.03
Time/sec
10 - {\

0 50 100 150 200 250 Sandia
_ National
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2-D Nanogap Concept

LOx10” | Before Assembly
e After Assembly s i

5.0x10"° o
- 0.0 (N
§ o
R o* . .
S sox10™ «Small gap fabricated from highly

Loxto® _' dope silicon that can be

e functionalized via diazonium
15 10 05 00 05 1.0 15

Vhbias (V) ChemiStry

Sandia
S. W. Howell et al.., Nanotechnology, 16(6), 754-758, 2005. @ National
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Gold Nanogaps

Mo lRamB Post Au evaP.

MESA West Z23kU 8. Zum %88, 8006

S. M. Dirk et al., Nanotechnology, 16(10), 1983-1985, 2005.
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'
}‘ HOMOJ/LUMO Modification

Sensing Protected Phenol Molecules

Additional electron density is added to the phenol via the phosphonate thus
modifying the HOMO/LUMO gap in the protected phenol compound
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'
}.‘ HOMO/LUMO Modification

Sensing Protected Phenol Molecules OMe
MeO~p

Additional electron density is added to the phenol via the phosphonate thus
modifying the HOMO/LUMO gap in the protected phenol compound
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