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Miniaturization of Analytical Capabilities

Goal:
•High Sensitivity
•Portable
•Reliable

•Low Power

Desktop Handheld

Micro Chem LabTM

Embedded

Courtesy of Ron Manginell and Matt Moorman

Courtesy of Pat Lewis



Our Approach to Chemical Sensing 
(μChemlab™)

Sample 
Concentration

Separation 
GC

Detection 
SAW

Pump

•Vast majority of  sensors have limited selectivity (reacting to classes of analytes)

•To improve identification of chemical species and sensitivity, we use: 
•Selective preconcentration 
•Temporal separation (commercial GC or MEMS columns) 



Nanoparticle Sensor Background
• Mechanisms of transduction

– Adsorptive swelling (“Chemiresistor”) 
• Snow & Wohltjen Anal. Chem. 1998, 70, 2856-2859

– Dielectric modification to the nanoparticle capping layer
• Joseph et al., Sensors and Actuators B 98 (2004) 188-195

– Molecular electronic 
• Sandia 

Why use nanoparticle based sensors?
• Much easier to measure a change in resistance

• Consume less energy

Moving Beyond The SAW 

Nanoparticle

Capping 
Ligands



Molecular Electronic Approach: 
Smart Chemiresistor (SCR)

analyte

Nanoparticle

Conducting 
Bridging Ligand

Bridging Ligand
Non-conducting
With Analyte

•Nanoparticles serve as mini-electrodes scaffolding

•HOMO LUMO gap altered changing conductivity

•Characterize analyte by measuring change in 

resistance (low power)

•More specific response 

This is an  extension to the Chemiresistor developed by Snow & Wohltjen 
Anal. Chem. 1998, 70, 2856-2859
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HOMO-LUMO Modifications

Difference in HOMO/LUMO Gaps = 0.35 eV   (14 x kT at RT)
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Novel Nanoparticles

toluene

stearonitile

NaBH4

HAuCl4 Au NC

H2PtCl6

toluene

stearonitile

NaBH4

Pt NC

Isolatable as Solid!

We have accomplished the first 
synthesis of stable nitrile capped 
nanoparticles by modification 
of the Brust method.  The nitrile 
capping agent serves as a 
sacrificial layer which may easily 
be replaced by stronger 
binding ligands (e.g. thiol, isonitrile 
or diazonium groups).

2 nm

5 nm



Iterative Nanoparticle Ligand Assembly

Substrates
• Glass, Gold, Silicon
Nanoparticles
• Gold (5nm)
• Platinum (2nm)
Molecules 
• phenylene ethynylene (PE)
• octanedithiol (ODT) 

Process

• Synthesis of stable nitrile capped nanoparticles by 
modification of the Brust method

• Piranha cleans and hydrates the surface

• Treat with tetrakisdimethylamino silane and react with a dithiol

• Ready for nanoparticle attachment

• Tune resistance with each applied layer
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•Automation was required for reproducibility



Initial Liquid Phase Sensing Experiment
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Au-ODT Film: Swelling Test
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Initial Vapor Sensing of Dimethyl Methyl 
Phosphonate  (DMMP)

•Deposited Au nanoparticle films 
cross-linked with sensing and 
control molecules 

•Films exposed to DMMP 
preconcentrated for increasing 
times (source emission ~ 7 ppm)

•Films cross-linked sensing 
molecule have greater 
response to DMMP than ODT 
control films

•We see a specific response

SMD-10-21 protected phenol
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H2O

1) TEA

2)

Si(OEt)4

SAcAcS

SS

SS

1

An Improved Approach

•Do to problems with stability, we 
started assembling cross-linked films 
in silica matrix 

•We see both improved stability, 
reproducibility and  sensitivity  

•Films as simple drop coated on to 
IDE’s

Silica Matrix



Typical SCR Response to DMMP
(0.1 µl DMMP in 1.0 mL CS2) 
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•For 600 ppb of DMMP:

Response: 5 pA
Noise: 50 fA
S/N: ~ 100
TC: 100 ms
Bias: +10 V 

•GC operated using a split

DMMP LOD: XXX



TEOS+PE+NP
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ZnO Nanowires  
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Mechanisms of Resistive Oxide Sensors

• Chemisorbed oxygen species on surface bind 
conduction electrons

• Reducing species react with oxygen and releases
electrons



Structured Sensors

•Assembled on interdigitated electrodes with 2 m gaps
•Deposition parameters   10 kHz, 10 Vac, 10 minutes
•Densities ~ 1.5 rods / 10 m



Sensitivity of Random ZnO NW Network 
Deposited on 8 µm Gap

Toluene and Ethanol exposure
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System Integration of SCR:
Micro-Preconcentrator (3D PC)
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Strong hydrogen
bonding interactions

Absorbent covalently
bonded to silica matrix

•By using a PC and appropriate coating, the PC can share 
the burden of selectivity with the sensor  

•Micro PC consist of conductive heater supported by thin membrane
•Coated with base-catalyzed Sol-Gel
•Low thermal mass enables rapid heating producing sharp analyte pulse



SCR Packaging (Minimum Dead Volume)

0.5 mm thick 
glass with 685 
micron capillary 
holes 

Two quartz 
nanoparticle IDT 
chips covered by a 
flow lid



SCR and FID Comparison Using 
Commercial CG column 

-4

-2

0

2

4

6

0 10 20 30 40 50 60 70 80 90 

DMMP, DEMP, TOL, iOCT, 
C10

DMMP & DEMP only

C
R

 S
ig

n
a
l 
(V

) 

Time (sec) 

DMMP 

DEMP 

-4.0x105

-2.0x105

0

2.0x105

4.0x105

0 20 40 60 80 100 120 

F
ID

 S
ig

n
a
l 
(p

A
) 

DMMP 
DEMP 

C10 

TOL 

iO
C

T

•The SCR ignores interferant 



Time (sec) 

C
R

 S
ig

n
a
l 
(V

) 

-4

-2

0

2

4

6

-80 -60 -40 -20 0 20 40 60 80 

CR response for DMMP, DEMP, TOL, 
iOCT, C10

CR response for DM & DE Only

DEMP 

DMMP 

DMMP 

DEMP 
DMMP 

DMMP 

PC Fire Blow By 

SCR and FID Comparison Using 
Commercial CG column and PC 



Selective Preconcentration 
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Sandia Micro Gas Analyzer – DARPA Phase II
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Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.
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Acquired >11,300 chromatograms
using complete system (micro PC, 
micro GC, micro detector)

•DMMP + DEMP delivered by MIT-LL 
sample manifold.

•Also completed 2 full interferent 
matrices

•Still working on data reduction

•The bad news:  80 sec PC load at 1500 ppb



Conclusions

• Enhanced selectivity of SCR using electronically 
active cross-linking ligands 

• When packaged in low dead-volume cells, typical 
film’s LOD detection was measured the single 
ppb range 

• Developed films that are stable under constant 
bias conditions for weeks

• Integrated films with micro-PC and MEMS GC 
columns 
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Figure A2.  Comparison of TEOS TEA +NP with different analytes (octane, toluene and DMMP) (log/log 
plot)
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Conclusions

• Developed a novel nanoparticle synthesis

• Developed an array of unique chemistries for both functionalization 
and sensing

• Designed and fabricated a robotic preparation system

• Observed a linear drop in resistance for layer-by-layer assemblies 
for different combinations of nanoparticles and crosslinker ligands 

• Observed a change in film resistance due to modification in 
conductance of the crosslinking molecules 

• Observed vapor detection of preconcentrated DMMP

• Developed several nanogap fabrication methods



Components Required for Detector

• Organic Sensing Molecules

– Conjugated phenylene ethynylene

• Metal Nanoparticles

– Sacrificial ligands to stabilize in solution

• Nano/Micro Gaps

OH

Z

Y Y



Sensing Degradation

HO O

H+

One Possible Explanation for Cessation of Switching

Acid catalyzed benzofuran formation



Why use nanoparticle based sensors?
• Much easier to measure a change in resistance

• Consume less energy

Nanoparticle Sensor Background
• Mechanisms of transduction

– Adsorptive swelling (“Chemiresistor”) 
• Snow & Wohltjen Anal. Chem. 1998, 70, 2856-2859

– Dielectric modification to the nanoparticle capping layer
• Joseph et al., Sensors and Actuators B 98 (2004) 188-195

Moving Beyond The SAW 

Nanoparticle

Capping 
Ligands



Molecular Lengths 

Structure Length/nm

meta-phenylene ethynylene diisocyanide 1.88

Boc protected nitrophenol meta-phenylene ethynylene diithiol 1.72

1,8-octanedithiol 1.17

Au-S bond 0.23

Pt-S bond 0.23

RNC-Au* 0.2

RNC-Pt** 0.11

*Journal of the Chemical Society, Dalton Transactions  (2001),   (8),  1196-1200.

**Organometallics  (2003),  22(16),  3316-3319.



μChemlab™ - Detection

Each SAW device consists of 
an input and output interdigital 
transducer patterned on a 
piezoelectric substrate. 



Ligands and Nanoparticles
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Cross-Sectional SEM

Glass

Au Film
Glass

Pt Film
Au electrode + 
Pt film



Robotic Preparation
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Joseph et al., J. Phys. Chem. B 2003, 107, 7406-7413
•Observed a linear increase in 1/Rfilm

*Snow et al., J. Mater. Chem., 2002, 12, 1222-1230
•Observed a alternating current with each 

additional layer



Initial Low Temperature Studies
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Organic Molecules

• Number of different functionalization chemistries available 
to use including:

– Diazonium salt

– Thiol

– Nitrile

– Amine

– Isonitrile

• Conjugated “backbone”

• Electron deficient phenol

*Synthesized by Dirk and Wheeler
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Ligands and Nanoparticles

3.0µm

Stearonitile capped Au nanoparticles 
were assembled in a stepwise fashion 
onto a Au electrode.
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Robotic Assembly

•The substrate is 
dipped into the 
nanoparticle solution.

•A rinse stage removes 
excess nanoparticles 
and ligands.

•The sample holder has 
the capability to 
interface with electrodes 
on substrate.



Sample IDE - Au Functionalized with TDMAS

ESC-1-12 6/7/2005 
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Cycle vs. Average Resistance
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Initial Vapor sensing of DMMP using a protected 
phenol

210 second concentration of 7 ppm  DMMP vapor of with Tenax PC using Boc 

Protected Phenol Molecule as  Ch 1 and Ch 2 and ODT as Ch 3 and Ch 4 both with 

Au nanoparticles
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Our initial observation during exposure to DMMP show: 
•Protected phenol-Au films have dramatically increased conduction (molecular electronic effect)
•Control ODT-Au films have a slight decrease in conduction (swelling)  
•Films response is rapid 

Phenol Film

ODT Film



2-D Nanogap Concept

70 Å

Si

Poly Si

S

S

Au

•Small gap fabricated from highly 
dope silicon that can be 
functionalized via diazonium 
chemistry 
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S. W. Howell et al.., Nanotechnology,  16(6),  754-758, 2005.
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Additional electron density is added to the phenol via the phosphonate thus 
modifying the HOMO/LUMO gap in the protected phenol compound

Sensing Protected Phenol Molecules

HOMO/LUMO Modification
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Additional electron density is added to the phenol via the phosphonate thus 
modifying the HOMO/LUMO gap in the protected phenol compound

Sensing Protected Phenol Molecules

HOMO/LUMO Modification
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