
Introduction to FEI
(Finite Element Interface to linear solvers)

Alan Williams

Sandia National Laboratories

TUG

Nov. 06, 2007

SAND2007-7112C

Linear systems from implicit
FEM/FVM applications

Linear systems arise in implicit
finite element formulations: nnxn fuK

fKu





,;

Calore:
Galerkin FEM
heat transfer,
radiation, ...

Fuego:
Pool fires,
turb. flows,...

FEI is a linear system assembly library
• Mediates between finite-element view (nodes, degrees of freedom)
and algebraic view (equations, indices).

• Assists with parallel communications (e.g. for shared-contributions)
• Provides abstraction layer, putting a common interface on various solver
libraries

Element-
stiffnesses

Element-
loads

Boundary-conditions,
Constraint-relations

F
E
I

Algebraic linear system
K u = f

=

FEI is a filter -- finite-element data to
linear algebra data

Assembly from
multi-physics problems

Velocity
& Pressure

Velocity

Pressure

•Solution ‘fields’ are collections of scalars

•e.g., temperature scalar, displacement vector

•Define arbitrary mixture of fields-per-node on elements

•Define element-topologies for blocks of elements

Parallel mappings

Proc 7

Proc 6

Shared Node 648

Node 926

Element-based mesh
decomposition

Equation-based algebraic
decomposition

Eqns 3986
to

3989

Eqns 2732
to

2735

Assembly from
multi-physics problems

Velocity
& Pressure

Velocity

Pressure

Filtering options:

Eqns for V, P
interleaved

C

A (eqns for V)

B (eqns for P)

BTSingle global
matrix

Separate partitioned
matrix blocks

Constraint Relations

Ku = f, K is n x n
Cu = g, C is c x n, c is num-constraints

K CT u = f
C 0 v g

Penalty formulation: contributions to existing matrix structure.
Lagrange Multiplier formulation results in partitioned system

Solve system subject to algebraic constraints,
enforced by Penalty or Lagrange Multiplier formulation

Common source of constraints:
Hanging nodes from adaptive
mesh refinement:
2 quad elements:

Hanging node

KR = Kii + Kid D + DT KddD

Constraint Relations (continued)

Slave-constraint reduction (from paper by St. Georges et al)

ud = D ui + h

Split solution space ‘u’ into dependent and independent unknowns

K = K ii K id

K d i K dd

Then reduced matrix is given by:

If constraints represent master-slave relations,

C = D - I

FEI can create reduced matrix from element-level contributions

Constraint Relations (continued)

FEI filtering option:
Lagrange Multipliers or Slave reduction

139 DOF, 38 constraints
Matrix: 169x169

139 DOF, 38 ‘slaves’
Matrix: 101x101

K

C

CT

0

Key point: reduced matrix is SPD,
augmented matrix is indefinite

FEI classes & interfaces

<<interface>>
fei::Matrix

<<interface>>
fei::Vector

fei::MatrixGraphfei::VectorSpace

fei::Vector_Impl<> fei::Matrix_Impl<>

Example: instantiation for a Trilinos matrix object:

fei::Matrix* matrix = new fei_impl::Matrix<Epetra_CrsMatrix>

The connection between fei_impl::Matrix<> and
Epetra_CrsMatrix is made using a Traits class.

VectorSpace:
Maps mesh objects and
fields to equation-space

MatrixGraph:
Maps connectivities to
sparse nonzero structure

Libraries available through FEI

Trilinos SNL

HYPRE LLNL/CASC

PETSc ANL

FETI SNL

Prometheus UC-Berkeley,
now Columbia?

•For each solver library, a “glue layer” is required to connect it to FEI.

•The support layer for Trilinos, PETSc is included with FEI code distribution.

•HYPRE, FETI and Prometheus provide their own FEI support layer.

Common question: does FEI impose significant
overhead?

For most matrix/vector coefficient contributions, FEI simply passes
pointers through to underlying solver-library data structures.

However, there is work done in creating matrix-graph (nonzero sparsity
pattern) as well as parallel communication for shared-contributions, etc.

This is work that would have to be done elsewhere if FEI wasn’t
doing it, but it is worth verifying that FEI does it efficiently.

Test problem: 3-D “beam” of 8-node Hexahedral elements.

Dimension: W x W x D elements

In parallel, sliced across ‘D’ dimension.
Each proc has W x W x (D/nprocs) elems.

W

W

D

Scalability measurement
FEI assembly time, ASC “Red Storm”

(Includes Trilinos matrix assembly)

1

10

100

16 64 128 256 512 768 1024 2048

Processors

s
e

c
o

n
d

s

Procs
16
64

128
256
512
768

1024
2048

Eqns
16.9M
67.8M

135.5M
271.0M
542.0M
813.0M
1.084B
2.107B

~1M Eqns/proc“Beam” of 8-node Hex elements

Speedup measurement
FEI assembly time, ASC “Red Storm”

(Includes Trilinos matrix assembly time)

0

1

10

100

1 10 100 1000

Processors

s
e

c
o

n
d

s

measured

linear speedup

Procs
1
2
4
8

16
32
64

128
256
512

Eqns/proc
1.04M
521K
261K
132K

67K
34K
18K
10K

6K
4K

“Beam” of 8-node Hexes. Fixed-size problem, 1M Eqns

Summary

•FEI:
•Helps with mappings between finite-element and
algebraic points-of-view

• abstraction layer makes linear system assembly look the same
for all solver libraries (not including solver control parameters, of
course).

•filtering operations provide useful solution capabilities for
constrained problems, multi-physics problems, etc.

•parallel communications and mappings have been proven to be
efficient and scalable on large numbers of processors.

•Note: Trilinos also contains other abstraction layers:
•Thyra interfaces abstract operators/vectors from data,
•Amesos package is an interface to several sparse direct
solvers such as UMFPACK, SuperLU, etc.

