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Outline/Overview

We have a developed a cathode plasma model for the PIC code Lsp and
applied it 1D and 2D simulations magnetically insulated transmission lines
(MITLs).

The numerical implementation of the algorithm is detailed.

The algorithm is tested by using pre-calculated MITL equilibria into which
we introduce a thin cathode plasma which is allowed to evolve in time
and study

The Lsp results are qualitatively similar to a simple model in which a
cathode plasma diffusion equation is coupled to laminar flow theory.

1D simulations exhibit simple scaling of cathode plasma thickness, x ~ t%/2.

In 2D, with cyclotron orbits in the simulation plane, a flute instability can
develop from transverse charge separation. In this case the plasma
thickness can grow much more rapidly than for a purely diffusive process.



High-Power 2D Parallel-Plate MITL Simulations*

* Explicit EM, kinetic
particles, 1 —10 MV

e High resolution across
the AK gap (150 cells)

e Electron flow initiated by
SCL emission from
cathode, electron flow
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*D.V. Rose, et al. “Electron Flow Stability in Magnetically Insulated vacuum transmission lines”, Phys. of
Plasmas 18, 033108 (2011).



Simulated MITL Equilibria for Voltages from 1-10 MV

L 12
* Equilibrium electron A V=i —— '
H 10 V=32MV — A -
numberand current density - A
profiles for Voltages of 1.47, g ® 1 ¢ 7
Q

3.22,10.57 MV. % 6 1 g T
* Averaged over 10-cm 2 . .
section of MITL in 2D ol e pol—t 1 1

] . 0O 025 05 075 1 125 15 0 025 05 075 1 125 15
simulation x (cm) X (cm)

Schematic illustration of 1D Cartesian Cathode Plasma Simulation
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* Load in an initial MITL equilibrium.

* Introduce a thin cathode plasma and allow it to
diffuse into the AK gap.
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Quasi-Laminar MITL Equilibria

L
< Compare LSP with Quasi-Laminar theory of Ron, et al.*
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Note that Lsp fields lack discontinuities of Ron model at sheath edge

*A. Ron, et al. “Equilibria for Magnetic Insulation”, IEEE Trans. Plasma Sci PS-1, 85 (1973).



Cathode Plasma Diffusion Equation

Cathode plasma: Fully ionized, Isothermal, Quasi-neutral plasma n =n;=n_/Z
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Plasma is coupled to Ron equilibrium for MITL electrons at x = x;.

Numerical Implementation 108 L R B =15
Initial flat-top density profile, width x,. m_ 1 cm
~1017 H i~
Diffusion equation is advanced. % 10 7 '= 1
2 =
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then x; is incremented by Ax. V=10.57 MV (B, =2.15, 1,=3.399)
Integrate from x to get magnetic 1014
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Gap closure time (x; ~L) ~ 0.1 ms
Roughly independent of voltage.



Lsp Cathode Plasma Model

* Lay in initial MITL electron kinetic particles from fitted equilibria.
* Initial static and magneto-static solve to get E, and B,.
* Introduce thin cathode plasma (~ 1 ML over 1-2 cells Ax~ 10 um).

*The plasma is modeled by fluid electron and ion species, which are periodically
remapped onto the Eulerian grid to control the particle number and avoid noise.!

*Any ion flux leaving exiting the cathode is replaced by “repopulation” particles.
Reflect normal component of velocity, lose transverse. Repop particles get local fluid
temp.!

*Energetic fluid electron particles are converted to kinetic electrons to resupply the
electron flux at at the plasma edge (the “effective” cathode).?

*The simulations shown in the following were performed using direct implicit field
solution, due to the high initial cathode plasma density (@, At~ 1).3

1C. Thoma, et al. Phys. Plasmas 18, 103507 (2011) (1973).
2 D. R. Welch, et al. Phys. Plasmas 13, 063105 (2006).
3D. R. Welch



1D MITL/Cathode Plasma Simulation (10.57 MV)
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Initial plasma width: 10 um (1 ML)

 Cathode plasma diffuses into AK gap, qualitatively similar to

diffusion model.

* Electric field is screened out in plasma. Plasma edge
becomes “effective” cathode.

* Electron flow in MITL sheath is only slightly perturbed for
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Fluid electrons with total KE > 300 eV are converted to kinetic electrons.
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Sheath edge calculation and Electrical Properties

Procedure used to calculate x,(t).
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1D MITL/Cathode Plasma Simulations
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2D Cartesian Simulations: XY and XZ
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* Repeat 10.57 simulation in 2D
Cartesian coordinates: Both XY and XZ.

* Periodic boundaries in Y(Z).

*YZ coordinates look essentially like 1D
analog.

*In XZ coordinates, charge separation
due to opposite cyclotron motions for
electrons and ions is captured in the
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instability.
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Conclusions

We have described the developed a cathode plasma model for the PIC
code Lsp and applied it 1D and 2D simulations magnetically insulated
transmission lines (MITLs).

The detailed PIC algorithm is in qualitative agreement with a simplified
diffusion model, and predicts plasma expansion of t/2.

The algorithm is tested by using pre-calculated MITL equilibria into which
we introduce a thin cathode plasma which is allowed to evolve in time
and study

The Lsp results are qualitatively similar to a simple model in which a
cathode plasma diffusion equation is coupled to laminar flow theory.

1D simulations exhibit simple scaling of cathode plasma thickness, x ~ t%/2.

In 2D simulations, with cyclotron orbits in the simulation plane, a flute
instability can develop from transverse charge separation. In this case the
plasma thickness can grow much more rapidly than for a purely diffusive
process.

In future we hope to consider larger-scale 2D and 3D simulations with
both anode and cathode plasmas modeled self-consistently.



