

CYGNUS DIVERTER SWITCH ANALYSIS*

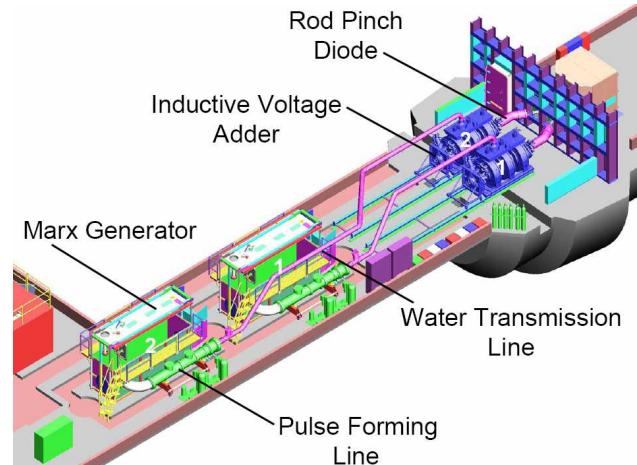
E. Ormond[§], I. Molina, S. Cordova and D. Nelson

*Sandia National Laboratories, PO Box 238, Mail Stop 944
Mercury, NV, USA*

J. R. Smith

*Los Alamos National Laboratory
Los Alamos, NM, USA*

G. Corrow, M. Hansen, D. Henderson and C. Mitton


*National Securities Technologies, 2621 Losee Rd
North Las Vegas, NV, USA*

Abstract

The Cygnus Dual Beam Radiographic Facility consists of two 2.25-MV, 60-kA, 50-ns x-ray sources fielded in an underground laboratory at the Nevada Test Site. The tests performed in this laboratory involve study of the dynamic properties of plutonium and are called subcritical experiments. From end-to-end, the Cygnus machines utilize the following components: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, 3-cell inductive voltage adder (IVA), and rod-pinch diode. The upstream coaxial transmission line interface to the PFL is via a radial insulator with coaxial geometry. The downstream coaxial transmission line terminates in a manifold where the center conductor splits into three lines which individually connect to each of the IVA cell inputs. There is an impedance mismatch at this juncture. It is a concern that a reflected pulse due to anomalous behavior in the IVA or diode might initiate breakdown upon arrival at the upstream PFL/coax insulator. Therefore near the beginning of the coaxial transmission line a radial diverter switch is installed to protect the insulator from over voltage and breakdown. The diverter has adjustable gap spacing, and an in-line aqueous-solution (sodium thiosulfate) resistor array for energy dissipation. There are capacitive voltage probes at both ends of the coaxial transmission line and on the diverter switch. These voltage signals will be analyzed to determine diverter performance. Using this analysis the usefulness of the diverter switch will be evaluated.

I. GENERAL SYSTEM DESCRIPTION

The Cygnus Dual Beam Radiographic Facility consists of two Flash X-Ray machines designed for a Sub-Critical Experiment (SCE) at the Nevada Test Site (NTS). Their success led to a second series of SCE's named Thermos which just concluded in May of 2007. The machines had to fit in an underground laboratory and as such were designed in a linear fashion. The other requirement was two machines that could be fired independently and 60 degrees apart as shown in Figure 1. The major components of Cygnus include the Marx, PFL, Water Coax, Inductive Voltage Adders (IVA's), Vacuum Insulated Transmission Line (VITL) and Diode.

Figure 1. CYGNUS layout in the U1a facility at the Nevada Test Site.

[§] email: eormond@sandia.gov

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

A. Marx

The Marx consists of 32 full stages of 100kV, 200nF capacitors and two half-stages of 50kV capacitors. The Marx output is directed with a swing arm to either a 28 ohm load or to the PFL. The swing arm allows the Marx to be charged while the output is tied to the dummy load. If a pre-fire occurs during charging it is safely absorbed in the dummy load while protecting the diode. This is a valuable feature as the diode requires rebuilding after every down line pulse.

The Marx is suspended on nylon straps from the Marx tank lid as shown in Figure 2. This allows maintenance by simply raising the Marx lid out of the oil using hydraulic rams located on each corner of the Marx tank.

The Marx diagnostics include a Current Viewing resistor (CVR) on the input of the Marx and a voltage monitor attached to the output plate.

Figure 2. CYGNUS Marx Generator on nylon straps.

B. PFL

The PFL is a modified Radiographic Integrated Test Stand (RITS) design [1] that was shortened ~ six inches. The main switch, transfer lines and sharpening switch are the original RITS design with a modified oil pre-pulse switch to allow transition to the Water Coax line.

The diagnostics on the PFL include current (B-dot) and voltage (D-dot) located before and after the main and sharpening switches as shown in Figure 3.

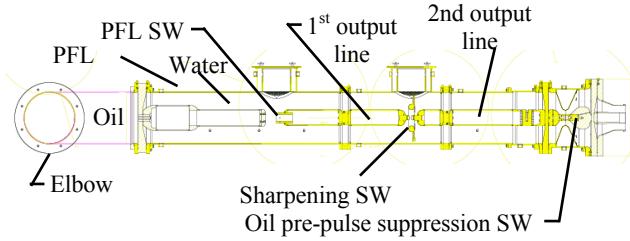


Figure 3. Cygnus PFL.

C. Water Coax and Diverter Switch

The PFL output transitions to a coaxial water line which allows flexibility in placement of the Marx/PFL in the

underground facility. Water conditioning stations keep the water de-ionized and de-aerated while maintaining conductivity in the $> 10 \text{ M}\Omega$ per square centimeter. Diagnostics include B-dot and D-dot monitors on the input and output of the water coax line.

The Diverter Switch uses five sodium thiosulfate water resistors to absorb reflected energy and protect the PFL output barrier. A torlon rod can be adjusted to vary the gap as shown in Figure 4.

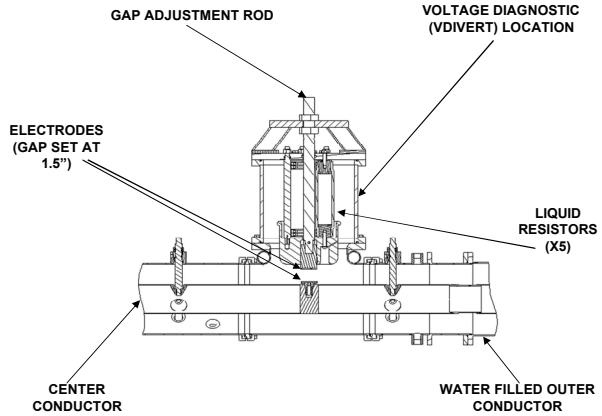


Figure 4. CYGNUS Diverter Switch cutaway.

An additional D-dot was added approximately mid-point in line with one of the five resistors to measure the reflected pulse as shown in Figure 4.

D. IVA and VITL

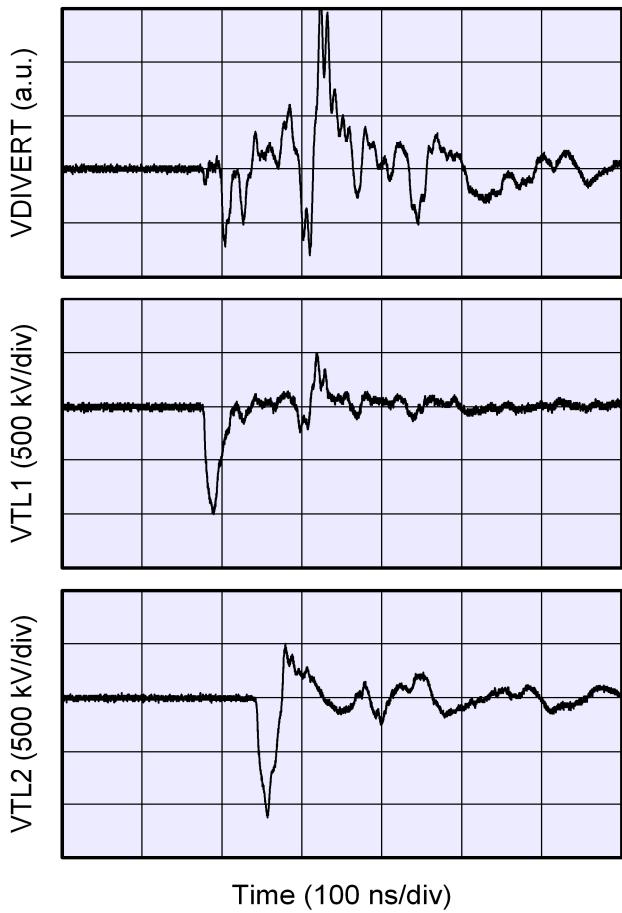
The IVA skid includes an oil manifold and three IVA cells feeding a VITL. The cells are modified Sandia Accelerator and Beam Research Experiment (SABRE) cells containing a new radial vacuum feed. The cells also have inspection plates for easy inspection and cleaning. All surfaces inside the cells and VITL exposed to greater than 150 kV/cm have been hard anodized to control surface emission.

A cantilevered stalk is adjusted using four vacuum bellows attached to cables. A rotational adjustment was added to allow alignment of the 30 degree bend in the VITL towards the diode.

E. Diode

Cygnus uses the Rod Pinch diode developed by the Naval Research Laboratory [2] and tested on TRIMEV [3] and SABRE.

II. HISTORY OF THE DIVERTER SWITCH


The need for the Diverter Switch was addressed during the design stage for the Cygnus machines [4]. Weidenheimer theorized the reflected energy could be reverse polarity spikes, 10ns in duration that are 80% of

the forward going pulse amplitude. Due to this potential reflected energy it was determined the Pulse Forming Line (PFL) output barrier required protection. Computer modeling predicted the most stressed node would be the Water Coax to PFL transition. This barrier is a 2" thick barrier manufactured from polycarbonate.

Review of the diverter switch waveforms has shown the added diagnostic to be instrumental in determining degradation of torlon rods used in the Water Coax and also indicated tracking of the main MARX/PFL barrier.

III. ANALYSIS OF THE DIVERTER SWITCH

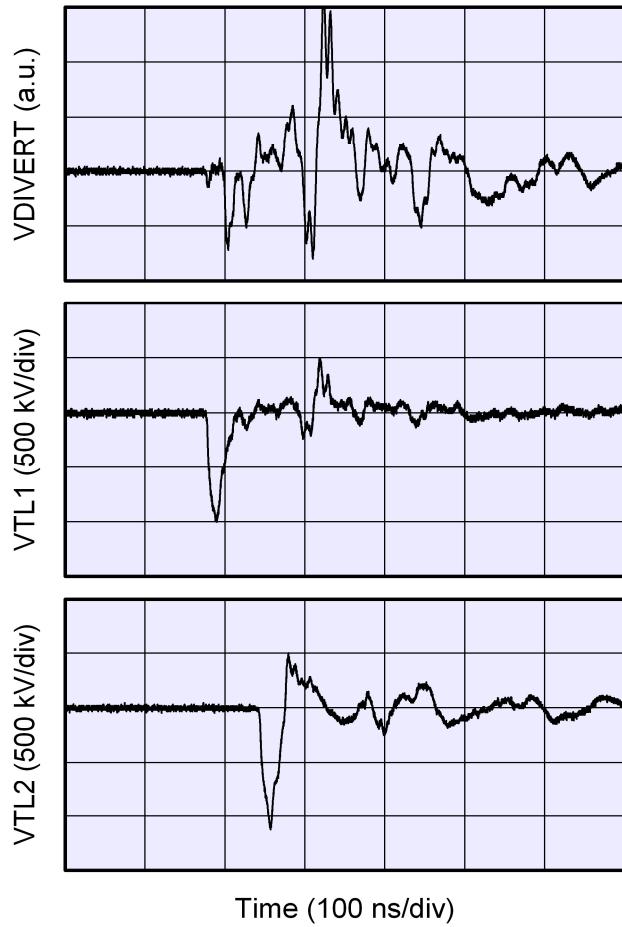
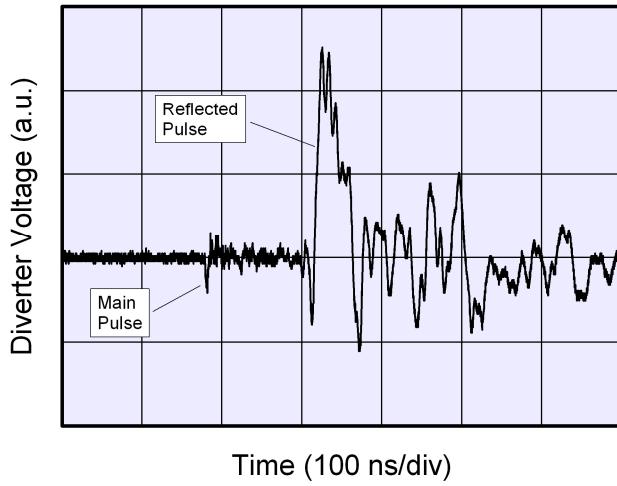

The original intent of this data analysis was evaluation of the diverter switch. Computer modeling had predicted a reflected pulse that possibly could damage the output barrier of the PFL so the switch was added. The original project Physicist conducted shots to optimize the switch and requested the diagnostic port be added to the can of the switch.

Figure 5. Cygnus 1 VDIVERT, VTL1 and VTL2.

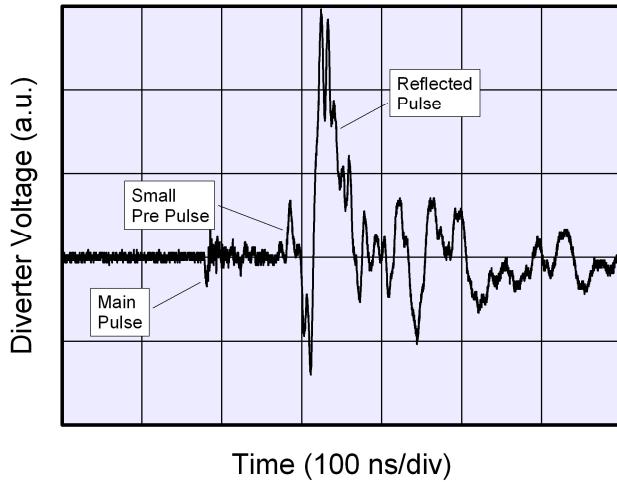
The wave shape was analyzed to see how it correlates to diode operation and failure modes. Standard comparisons of the VDIVERT (Located just before

VTL1), VTL1 (Located just after Diverter switch) and VTL2 (Located just before IVA manifold input) for each machine are shown in Figure 5 for Cygnus 1 and Figure 6 for Cygnus 2.

Figure 6. Cygnus 2 VDIVERT, VTL1 and VTL2.


VTL1 is the first negative pulse, followed by VTL2, the second negative pulse. About the same transit time later the reflected positive pulse is shown first on VTL1 and then on VDIVERT.

A. Basic Diverter Wave Shape


The basic shape of the waveform was labeled as "Main Pulse" which is the outgoing pulse shown in Figure 5. The "Reflected Pulse (inverted)" is the positive pulse being adsorbed by the switch. The outgoing pulse was annotated as pre pulse and was further divided in to "No pre pulse", "Small pre pulse" and "Large pre pulse". These three wave shapes indicate increasing degrees of pre pulse. The increasing pre pulse was not an indicator of breakdowns.

- No pre pulse is identified in Figure 7 and shows only noise until the reflected pulse returns.
- Small pre pulse shows a small pulse just before the reflected pulse in Figure 8.

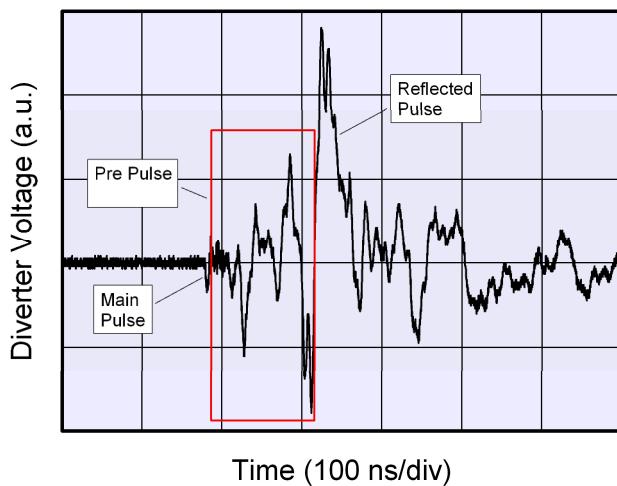

- Large pre pulse shows multiple transitions during the outgoing pulse as shown in Figure 9.

Figure 7. Sample of No Pre Pulse wave form.

Figure 8. Sample of Small Pre Pulse wave form.

Figure 9. Sample of Large Pre Pulse wave form.

The last shape, “Large Pre Pulse” was observed often. Comparisons of the Water Coax input diagnostic (VTL1) to the output diagnostic (VTL2) were completed to verify this absorbed energy did not limit power to the IVA manifold.

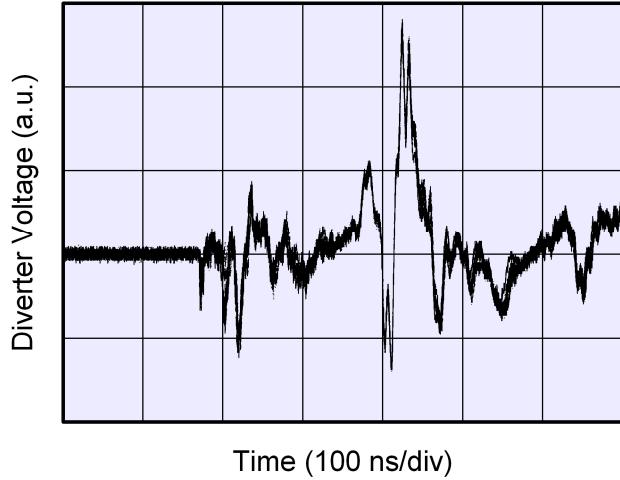
B. Integral

Since the original intent of the analysis was to determine operation and subsequently if the switch was needed at all, the energy absorbed was important. The resistor stack was designed to absorb the entire outgoing pulse if the gap was incorrectly set so the safety of the PFL output barrier is the only part in question.

The original calibration data is limited and as such the authors have determined at this time we can not definitively state the diverter switch is or is not required in the system. Hardware will have to be designed to allow a calibration similar to standard diagnostics using a pulser and resistor assembly to quantitatively record pulse.

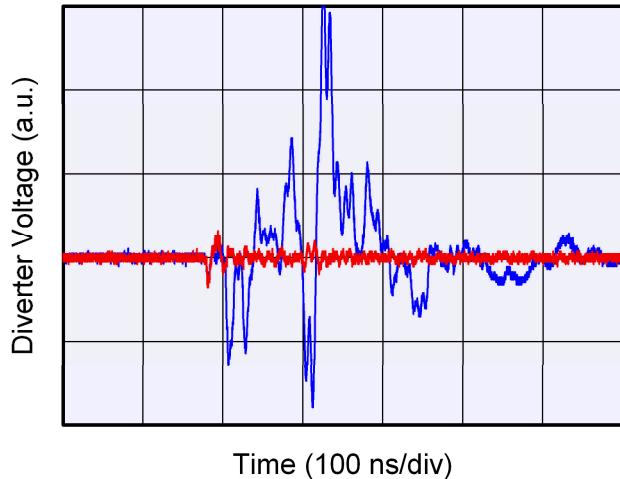
Though the numbers measured are arbitrary the data will be ready to manipulate once the calibration factor is determined. Table 1 shows all down line shots since the machines were moved under ground in 2003. Despite occasional torlon rod failures the VDIVERT integral has been very consistent. Note that during the Armando series on Cygnus 2 the VDIVERT integral was 730 ± 44 . During this series of shots there were no faults anywhere in the machine.

Table 1. CYGNUS DIVERTER ENERGY (Arb).


	CYGNUS 1	CYGNUS 2
Armando Confirmatory	912 ± 103	783 ± 58
Armando	850 ± 99	730 ± 44
Step Wedge	864 ± 94	779 ± 62
Thermos Confirmatory	993 ± 55	671 ± 60
Thermos	1055 ± 54	763 ± 46
All Shots	963 ± 109	740 ± 70

IV. DIAGNOSTIC IMPORTANCE

Review of the diverter switch data has proven the added diagnostic to be crucial in determining degradation of the torlon rods used in the Water Coax and indicated tracking of the main MARX/PFL barrier.


Cygnus reliability has always been a key operational element. The risk inherent in the execution of a SCE is that a high-stakes package is expended in a single event where there is no reprieve from catastrophic equipment failure [5].

When the Cygnus machines are operating flawlessly the diagnostic produces a very repeatable waveform that gives the operators a quick look at the machine health as shown in Figure 10, a ten shot overlay.

Figure 10. Standard 10 Shot Overlay.

The benefit of a sensitive diagnostic is shown in Figure 11 as we compare a standard shot to a torlon rod failure. The noisy waveform with no noticeable pulse shows the energy was diverted through a torlon rod and did not reflect back to the diverter switch.

Figure 11. Anomaly Comparison.

V. SUMMARY

The diverter switch has been shown to be a valuable diagnostic. Even if future calibration and analysis proves it is not required we would be inclined to, at a minimum, design a diagnostic to remain in the same location for future analysis of the torlon rod issues and PFL barrier studies.

The existence of pre pulse did not have any noticeable affect on the output of the machines. It was theorized that power absorbed during the outgoing pulse would have a direct effect on dose. Review of dose to pre pulse showed no correlation.

The diverter diagnostic has become a critical diagnostic during post shot analysis as it has a high sensitivity to failures starting at the PFL and continuing up to an impedance collapse in the diode.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the drafting skills of Deanna Jaramillo of Sandia National Laboratories.

VII. REFERENCES

- [1] D. Johnson et al., "Magnetic Insulation, Power Flow, and Pulsed Power Results on RITS-3," CP650, BEAMS 2002, Proc. 14th International Conference on High Power Particle Beams, pp. 123-126 .
- [2] G. Cooperstein et al., "Theoretical Modeling and experimental Characterization of a Rod-Pinch Diode," in Physics of Plasmas, Vol. 8, Number 10, October 2001.
- [3] P. Menge et al., SAND Report SAND2002-0082, "Experimental Comparison of 2-3MV X-ray Sources for Flash Radiography" Sandia National Laboratories, January 2002.
- [4] D. Weidenheimer et al., Proc. 13th IEEE Pulsed Power Conf., 17-22 June 2002, pp. 591-595.
- [5] J. Smith et al., Proc. 15th IEEE Pulsed Power Conf., 13-17 June 2005, pp. 334-337.