
New Teuchos Utility Classes for Safer Memory
Management in C++

Roscoe A. Bartlett

Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos Users Group Meeting, November 6th, 2007

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2007-7237C

Current State of Memory Management in Trilinos C++ Code

• The Teuchos reference-counted pointer (RCP) class is being widely used

– Memory leaks are becoming less frequent (but are not completely gone => circular
references!)

– Fewer segfaults from uninitailized pointers …

• However, we still have problems …

– Segfaults from improper usage of arrays of memory (e.g. off-by-one errors etc.)

– Improper use of other types of data structures

• The core problem? => Ubiquitous high-level use of raw C++ pointers in our
application (algorithm) code!

• What I am going to address in this presentation:

– Adding additional Teuchos utility classes simular to Teuchos::RCP to encapsulate
usage of raw C++ pointers for:

• handling of single objects

• handling of contiguous arrays of objects

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Outline

• Background

– Background on C++

– Problems with using raw C++ pointers at the application programming level

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Popularity of Programming Languages

Source: http://www.tiobe.com

• C++ is only the 4th most
popular language

• C is almost twice as popular
as C++ (so much for object-
oriented programming)

• Java and Visual Basic
popularity together are at least
4 times more popular than
C++

• Fortran is hardly a blip

– C++ is 20 times more popular

– Java is 40 times more popular

The ratings are based on:

• world-wide availability of
skilled engineers

• available courses

• third party vendors

Declining Overall Popularity of C++

Source: http://www.tiobe.com

The C++ Programming Language

• Highest Rating (since 2001): 17.531%
(3rd position, August 2003)

• Lowest Rating (since 2001): 9.584%
(4th position, October 2007)

The C# Programming Language

• Highest Rating (since 2001): 3.987%
(7th position, August 2007)

• Lowest Rating (since 2001): 0.384%
(22nd position, August 2001)

• C++ is about half as popular as it was 4 years ago!
=> Is C++ is on it’s way out? => Of course not, but it’s popularity is declining!

• C# is more than twice as popular as it was 4 years ago
=> Will C# mostly replace C++? => Depends if C# expands past .NET!

Implications for the Decline in Popularity of C++

• Fewer and lower-quality tools for C++ in the future for:

– Debugging?

– Automated refactoring?

– Memory usage error detection?

– Others?

• Fewer new hirers will know C++ in the future

– Bad news since C++ is already very hard to learn in the first place!

• Who is going to take over the maintenance of our C++ codes?

– However, the extremely low and declining popularity of Fortran does not
stop organizations from using it either …

The Good and the Bad for C++ for Scientific Computing

• The good:

– Better ANSI/ISO C++ compilers now available for most of our important
platforms

• GCC is very popular for academics, produces fast code on Linux

• Red Storm and the PGI C++ compiler

• etc …

– Easy interoperability with C, Fortran and other languages

– Very fast native C++ programs

– Precise control of memory (when, where, and how)

– Support for generics (i.e. templates), operator overloading etc.

• Example: Sacado! Try doing that in another language!

– If Fortran is so unpopular then why are all of our customers using it?

=> C++ will stay around for a long time if we are productive using it!

• The bad:

– Language is complex and hard to learn

– Memory management is still difficult to get right

Preserving our Productivity in C++ in Modern Times

• Support for modern software engineering methodologies

• Test Driven Development (easy)

• Other modern software engineering practices (code reviews supported by
coding standards, etc.)

• Refactoring => No automated refactoring tools!

• Safe memory management

• Avoiding memory leaks

• Avoiding segmentation faults from improper memory usage

• Training and Mentoring?

• There is not silver bullet here!

Refactoring Support: The Pure Nonmember Function Interface Idiom

• Unifies the two idoms:

– Non -Virtual Interface (NVI)
idiom [Meyers, 2005], [Sutter &
Alexandrescu, 2005]

– Non-member Non-friend
Function idiom [Meyers, 2005],
[Sutter & Alexandrescu, 2005]

• Uses a uniform nonmember function
interface for very “stable” classes
(see [Martin, 2003] for this definition
of “stable”)

• Allows for refactorings to non-public
virtual functions without breaking
current client code

• Doxygen \relates feature attaches
link to nonmember functions to the
classes they are used with.

SAND2007-4078

Outline

• Background

– Background on C++

– Problems with using raw C++ pointers at the application programming level

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Problems with using Raw Pointers at the Application Level

• The C/C++ Pointer:

Type *ptr;

• Problems with C/C++ Pointers

– No default initialization to null => Leads to segfaults

int *ptr;
ptr[20] = 5; // BANG!

– Using to handle memory of single objects

int *ptr = new int;
// No good can ever come of:
ptr++, ptr--, ++ptr, --ptr, ptr+i, ptr-i, ptr[i]

– Using to handle arrays of memory:

int *ptr = new int[n];
// These are totally unchecked:
*(ptr++), *(ptr--), ptr[i]

– Creates memory leaks when exceptions are thrown:

int *ptr = new int;
functionThatThrows(ptr);
delete ptr; // Will never be called if above function throws!

• How do we fix this?

– Memory leaks? => Reference counting! (not a 100% guarantee)

– Segfaults? => Memory checkers like Valgrind and Purify? (far from a 100% guarantee)

Ineffectiveness of Memory Checking Utilities

• Memory checkers like Valgrind and Purify only know about stack and heap
memory requested from the system!

=> Memory managed by the library or the user program is totally unchecked

• Examples:

• Library managed memory (e.g. GNU STL allocator)

Allocated from the heap by library using new[]

valgrind
“red zone”

valgrind
“red zone”

library management regions

memory given to application

untouched memory

• Program managed memory

One big array allocated from the heap by library using new[]

Sub-array given to
subrountine for processing

Read/writing outside of slice will
never be caught by valgrind!

Wrting into “management” regions
is not caught by valgrind!

Memory checkers can never sufficiently verify your program!

What is the Proper Role of Raw C++ Pointers?

AVOID USING RAW POINTERS AT THE APPLICATION PROGRAMMING LEVEL!

If we can’t use raw pointers at the application level, then how can we use them?

– Basic mechanism for communicating with the compiler

– Extremely well-encapsulated, low-level, high-performance algorithms

– Compatibility with other software (again, at a very low, well-encapsulated level)

For everything else, let’s use (existing and new) classes to more safely encapsulate
our usage of memory!

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Memory Management: Safety vs. Cost, Flexibility, and Control

• How important is a 100% guarantee that memory will not be misused?

• Two kinds of features (i.e. guarantees)

– Memory access checking (e.g. array bounds checking etc.)

– Memory cleanup (e.g. garbage collection)

• Extreme approaches:

– C: All memory is handled by the programmer, few if any language tools for safety

– Python: All memory allocation and usage is controlled and/or checked by the runtime
system

• With a 100% guarantee comes with a cost in:

– Speed: Checking all memory access at runtime can be expensive (e.g. Matlab,
Python, etc.)

– Flexibility: Can’t place objects where ever we want to (e.g. no placement new)

– Control: Controlling exactly when memory is acquired and given back to the system
(e.g. garbage collections running at bad times can kill parallel scalability)

Memory Management Philosophy: The Transportation Analogy

• Little regard for safely, just speed: Riding a motorcycle on the interstate (no
helmet, 100 MPH, doing a wheelie, in heavy traffic)

=> Coding in C/C++ with only raw pointers at the application programming level

• An almost 100% guarantee: Driving a reinforced tank (Styrofoam suite, racing
helmet, Hans neck system, 10 MPH max speed)

=> All coding in a language like Java or Python

• Reasonable safety precautions (not 100%), and speed: Driving in a car (using
a seat belt, driving speed limit, defensive driving, etc.)

How do we get there? => We can get there from either extreme …

– Sacrificing speed & efficiency for safely: Go from the motorcycle to the car:

=> Coding in C++ with memory safe utility classes

– Sacrificing some safely for speed & efficiency: Going from the tank to the to the car:

=> Python or Java for high-level code, C/C++ for time critical operations

Before we make a mad rush to Java/Python for the sake of safer memory usage
lets take another look at making C++ safer

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

– What about std::vector?

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Semantics of STL Containers: std::vector

std::vector<T> for continuous data

• Stored data type T must be a value type

– Default constructor: T::T()

– Copy constructor: T::T(const T&)

– Assignment operator: T& T::operator=(const T&)

• Non-const std::vector<T>

std::vector<T> v;

– Can change shape of the container (add elements, remove elements etc.)

– Can change element objects

• Const std::vector<T>

const std::vector<T> &cv = v;

– Can not change the shape of the container

– Can not change the elements

– Can only read elements (e.g. val = cv[i]);

General Problems with using std::vector at Application Level

• Usage of std::vector is not checked

std::vector<T> v;
…
a[i]; // Unchecked
*(a.begin()+i); // Unchecked
for (… ; a1.begin() != a2.end() ; …) { … } // Unchecked

• What about std::vector::at(i)?

// Are you going to write code like this?
#ifdef DEBUG
val = a.at(i); // Really bad error message if throws!

#else
val = a[i];

#endif

• What about checking iterator access? => There is no equivalent to at(i)

• Specialized STL memory allocators disarm memory checking tools!

• What about a checked implementation of the STL?

– Item 83, C++ Coding Standards: “Use a checked STL implementation”

– A checked STL implementation is hard to come by, especially for GNU/Linux

– This has to be part of your everyday programming toolbox!

Problems with using std::vector as Function Arguments

• Using a raw pointer to pass in an array of objects to modify

void foo (T v[], const int n)

– Allows function to modify elements (good)

– Allows for views of larger data (good)

– Requires passing the dimension separately (bad)

– No possibility for memory usage checking (bad)

• Using a std::vector to pass in an array of objects to modify

void foo(std::vector<T> &v)

– This allows functions to modify elements (good)

– Keeps the dimension together with data (good)

– Allows function to also add and remove elements (usually bad)

– Requires copy of data for subviews (bad)

• Using a std::vector to pass in an array of const objects

void foo(const std::vector<T> &v)

– Requires copy of data for subviews (bad)

– You are throwing away 95% of the functionality of std::vector!

Sub-array given to
subrountine for processing

Yes there is an
std::valarray class
but that has lots of

problems too!

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

– Introduction

– Management of single objects

– Management for arrays of objects

– Usage of Teuchos utility classes as data objects and as function arguments

• Challenges to using Teuchos memory management utility classes

• Wrap up

Basic Strategy for Safer “Pointer Free” Memory Usage

• Encapsulate raw pointers in specialized utility classes

– In a debug build (--enable-teuchos-debug), all access to memory is checked at
runtime … Maximize runtime checking and safety!

– In an optimized build (default), no checks are performed giving raw pointer
performance … Minimize (eliminate) overhead!

• Define a different utility class for each major type of use case:

– Single objects (persisting and non-persisting associations)

– Containers (arrays, maps, lists, etc.)

– Views of arrays (persisting and non-persisting associations)

– etc …

• Allocate all objects in a safe way (i.e. don’t call new directly at the application
level!)

– Use non-member constructor functions that return safe wrapped objects (See
SAND2007-4078)

• Pass around encapsulated pointer(s) to memory using safe conversions
between safe utility class objects

Definitions:

• Non-persisting association: Association that only exists within a single function call

• Persisting association: Association that exists beyond a single function call and where
some “memory” of the object persists

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

– Introduction

– Management of single objects

– Management for arrays of objects

– Usage of Teuchos utility classes as data objects and as function arguments

• Challenges to using Teuchos memory management utility classes

• Wrap up

Utility Classes for Memory Management of Single Classes

• Teuchos::RCP (Long existing class, first developed in 1997!)

RCP<T> p;

– Smart pointer class (e.g. usage looks and feels like a raw pointer)

– Uses reference counting to decide when to delete object

– Used for persisting associations with single objects

– Allows for 100% flexibility for how object gets allocated and deallocated

– Used to be called Teuchos::RefCountPtr

• See the script teuchos/refactoring/change-RefCountPtr-to-RCP-20070619.sh

• Teuchos::Ptr (New class)

void foo(const Ptr<T> &p);

– Smart pointer class (e.g. operator->() and operator*())

– Light-weight replacement for raw pointer T* to a single object

– Default constructs to null

– No reference counting! Used only for non-persisting association function arguments

– In a debug build, throws on dereferences of null

– Integrated with other memory utility classes

Teuchos::RCP Technical Report

SAND2007-4078

http://trilinos.sandia.gov/documentation.html

Conversions Between Single-Object Memory Management Types

<<implicit conversion>>

Legend

<<explicit conversion>>

Ptr<T>

RCP<T>

T*

T&

get() AVOID THIS!

get() AVOID THIS!

operator*

operator*

<Derived> to <Base>

<T> to <const T>

Ptr()
<Derived> to <Base>

<T> to <const T>

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

– Introduction

– Management of single objects

– Management for arrays of objects

– Usage of Teuchos utility classes as data objects and as function arguments

• Challenges to using Teuchos memory management utility classes

• Wrap up

Utility Classes for Memory Management of Arrays of Objects

• Teuchos::ArrayView (New class)

void foo(const ArrayView<T> &v);

– Used to replace raw pointers as function arguments to pass arrays

– Used for non-persisting associations only (i.e. only function arguments)

– Allows for 100% flexibility for how memory gets allocated and sliced up

• Teuchos::ArrayRCP (Failry new class)

ArrayRCP<T> v;

– Used for persisting associations with fixed size arrays

– Allows for 100% flexibility for how memory gets allocated and sliced up

– Uses same reference-counting machinery as Teuchos::RCP

• Teuchos::Array (Existing class but majorly reworked)

Array<T> v;

– A general purpose container class like std::vector (actually uses std::vector within)

– All usage is runtime checked in a debug build

– Gives up (sub)views as Teuchos::ArrayView objects

Raw Pointers and [Array]RCP : const and non-const

Raw C++ Pointers RCP

typedef A* ptr_A; RCP<A>

typedef const A* ptr_const_A; RCP<const A>
equivalent to

equivalent to

non-const pointer to non-const object

ptr_A a_ptr;
A * a_ptr;

RCP<A> a_ptr;equivalent to

const pointer to non-const object

const ptr_A a_ptr;

A * const a_ptr;

const RCP<A> a_ptr;equivalent to

non-const pointer to const object

ptr_const_A a_ptr;

const A * a_ptr;

RCP<const A> a_ptr;equivalent to

const pointer to const object

const ptr_const_A a_ptr;
const A * const a_ptr;

const RCP<const A> a_ptr;equivalent to

an address A’s data
a_ptr

Important Point: A pointer object a_ptr of type
A* is an object just like any other object with

value semantics and can be const or non-const

A a;
A* a_ptr = &a;

a

Example:

Remember
this

equivalence!

an address A’s data

an address A’s data

an address A’s data

an address A’s data

Teuchos::ArrayRCP

template<class T>
class ArrayRCP {
private:

T *ptr_; // Non-debug implementation
Ordinal lowerOffset_;
Ordinal upperOffset_;
RCP_node *node_; // Reference counting machinery

• General purpose replacement for raw C++ pointers to deal with contiguous
arrays of data and uses reference counting

• Supports all of the good pointer operations for arrays and more:
++ptr, --ptr, ptr++, ptr--, ptr+=i // Increments to the pointer
*ptr, ptr[i] // Element access (debug checked)
ptr.begin(), ptr.end() // Returns iterators (debug checked)

• Support for const and non-const:
ArrayRCP<T> // non-const pointer, non-const elements
const ArrayRCP<T> // const pointer, const elements
ArrayRCP<const T> // non-const pointer, const elements
const ArrayRCP<const T> // const pointer, const elements

• Does not support bad pointer array operations:
ArrayRCP<Base> p2 = ArrayRCP<Derived>(rawPtr); // No compile!

• ArrayRCP is reused for all checked iterator implementations!

Teuchos::ArrayView

template<class T>
class ArrayView {
private:

T *ptr_; // Non-debug implementation
Ordinal size_;

• Light-weight replacement for raw C++ pointers to deal with contiguous arrays of
data for use as function arguments

• Only support array dereferencing and iterators:
ptr[i] // Dereferencing the pointer to access elements
ptr.begin(), ptr.end() // Returns iterators (debug checked)

• Uses ArrayRCP for checked implementation!

• Support for const and non-const element access
ArrayView<T> // non-const elements
ArrayView<const T> // const elements

Teuchos::Array

template<class T>
class Array {
private:

std::vector<T> vec_; // Non-debug implementation

• Thin, inline wrapper around std::vector

• Debug checked element access:
a[i] // Debug runtime checked
a[-1] // Throws exception in debug build!
a[a.size()] // Throws exception in debug build!

• Debug checked iterators (uses ArrayRCP):
*(ptr.begin()+i) // Debug runtime checked
*(ptr.begin-1) // Throws exception in debug build!
*(ptr.end()) // Throws exception in debug build!

• Conversions to and from std::vector

• Nonmember constructors

Array<T> a = tuple(obj1,obj2,…);

<<implicit copy conversion>>

Conversions Between Array Memory Management Types

<<implicit view conversion>>

Legend

<<explicit view conversion>>

Array<T>

RCP<Array<T> >

RCP<std::vector<T> >

std::vector<T>

T*

<<explicit copy conversion>>

ArrayView<T> <T> to
<const T>

<T> to
<const T>ArrayRCP<T>

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

– Introduction

– Management of single objects

– Management for arrays of objects

– Usage of Teuchos utility classes as data objects and as function arguments

• Challenges to using Teuchos memory management utility classes

• Wrap up

Class Data Member Conventions for Arrays

• Uniquely owned array, expandable (and contractable)

Array<T> a_;

• Shared array, expandable (and contractable)

RCP<Array<T> > a_;

• Shared array, fixed size

ArrayRCP<T> a_;

– Advantages:

• Your class object can allocate the array as arcp(size)

• Or, you class object can accept a pre-allocated array from client

=> Allows for efficient views of larger arrays

• The original array will be deleted when all references are removed!

Warning! Never use Teuchos::ArrayView<T> as a class data member!

– ArrayView is never to be used for a persisting relationship!

– Also, avoid using ArrayView for stack-based variables

Function Argument Conventions : Single Objects, Value or Reference

• Non-changeable, non-persisting, required

const T &a

• Non-changeable, non-persisting, optional

const Ptr<const T> &a

• Non-changeable, persisting , required or optional

const RCP<T> &a

• Changeable, non-persisting, optional

const Ptr<T> &a

• Changeable, non-persisting, required

const Ptr<T> &a

or
T &a

• Changeable, persisting, required or optional

const RCP<const T> &a

Increases the vocabulary of you program! => Self Documenting Code!

Even if you don’t want to use these conventions you still have to
document these assumptions in some way!

Function Argument Conventions : Arrays of Value Objects

• Non-changeable elements, non-persisting association

const ArrayView<const T> &a

• Non-changeable elements, persisting association

const ArrayRCP<const T> &a

• Changeable elements, non-persisting association

const ArrayView<T> &a

• Changeable elements, persisting association

const ArrayRCP<T> &a

• Changeable elements and container, non-persisting association

const Ptr<Array<T> > &a

or
Array<T> &a

• Changeable elements and container, persisting association

const RCP<Array<T> > &a

Warning!

• Never use const Array<T>& => use ArrayView<const T>&

• Never use RCP<const Array<T> >& => use ArrayRCP<const T>&

Function Argument Conventions : Arrays of Reference Objects

• Non-changeable objects, non-persisting association

const ArrayView<const Ptr<const A> > &a

• Non-changeable objects, persisting association

const ArrayView<const RCP<const A> > &a

• Non-changeable objects, changeable pointers, persisting association

const ArrayView<RCP<const A> > &a

• Changeable objects, non-persisting association

const ArrayView<const Ptr<A> > &a

• Changeable objects, persisting association

const ArrayView<const RCP<A> > &a

• Changeable objects and container, non-persisting association

Array<Ptr<A> > &a or const Ptr<Array<Ptr<A> > > &a

• Changeable objects and container, persisting association

Array<RCP<A> > &a or const Ptr<Array<RCP<A> > > &a

• Changeable elements and container, persisting associations

const RCP<Array<RCP<A> > > &a

• And there are other use cases!

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Challenges for Incorporating Teuchos Utility Classes

• More classes to remember

– However, this increases the vocabulary of your programming environment!

=> More self documenting code!

• Implicit conversions not supported as well as for raw C++ pointers

– Avoid overloaded functions involving these classes!

• Refactoring existing code?

– Internal Trilinos code? => Not so hard but we need to be careful

– External Trilinos (user) code? => Harder to upgrade “published” interfaces but
manageable [Folwer, 1999]

How can we smooth the impact of these and other refactorings?

Refactoring, Deprecated Functions, and User Support

• How can we refactor existing code?

=> Keep deprecated functions but ifdef them (supported for one release cycle?)

• Example: Existing Epetra function:

class Epetra_MultiVector {
public:
ReplaceGlobalValues(int NumEntries, double *Values, int *Indices);

};

• Refactored function:

class Epetra_MultiVector {
public:
// New function
ReplaceGlobalValues(const ArrayView<const double> &Values,
const ArrayView<const int> &Indices);

#ifdef TRILINOS_ENABLE_DEPRICATED_FEATURES
// Depricated function
ReplaceGlobalValues(int NumEntries, double *Values, int *Indices)
{ ReplaceGlobalValues(arrayView(Values,NumEntries),

arrayView(Indices,NumEntries)); }
#endif
};

• How does this help users?

Refactoring, Deprecated Functions, and User Support

Upgrade process for user code:

1. Add -DTRILINOS_ENABLE_DEPRICATED_FEATURES to build Trilinos and user code

2. Test user code (should compile right away)

3. Selectively turn off -DTRILINOS_ENABLE_DEPRICATED_FEATURES in user code and let
compiler show code that needs to updated, Example:

// UserFunc.cpp
#undef TRILINOS_ENABLE_DEPRICATED_FEATURES
#include “Epetra_MultiVector.hpp”
void foo(Epetra_MultiVector &V)
{
std::vector<double> values(n); …
std::vector<double> indices(n); …
V.ReplaceGlobalValues(n,&values[0],&indices[0]); // No compile

}
4. Fix a few function calls, Example:

V.ReplaceGlobalValues(values,indices); // Now this will compile!

5. Turn -DTRILINOS_ENABLE_DEPRICATED_FEATURES back on and recompile

6. Run user tests and get all of them to pass before moving on [Fowler, 1999]

7. Repeat steps 3 through 6 for all user code until all deprecated calls are gone!

User code is incrementally and safely upgraded over time!

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Next Steps

• Finish development and testing of these Teuchos memory management utility
classes (arrays of contiguous memory)

• Incorporate them into a lot of Trilinos software

– Initially: teuchos, rtop, thyra, stratimikos, rythmos, moocho, …

– Get practical experience in the use of the class and refine design

• Write a detailed technical report describing these memory management classes

• Encourage the assimilation of these classes into more Trilinos and user software
(much like was done for Teuchos::RCP)

– Prioritize based on risk and other factors

• Start developing other memory safe utility classes:

– Teuchos::Map: Safe wrapper around std::map

– Teuchos::List: Safe wrapper around std::list

– Others?

Make memory leaks and segfaults a rare occurrence!

Conclusions

• Using raw C++ pointers at too high of a level is the source of nearly all memory
management and usage issues (e.g. memory leaks and segfaults)

• STL classes are not safe and their use can make code actually less safe than
when using raw C++ pointers (i.e. library handled memory allocation)

• Memory checking tools like Valgrind and Purify will never be able to sufficiently
verify our C++ programs

• Declining popularity of C++ means we will have less support for tools for
refactoring, debugging, memory checking, etc.

• Teuchos::RCP has been effective at reducing memory leaks of all kinds but we
still have segfaults (e.g. array handling, off-by-one errors, etc.)

• New Teuchos classes Array, ArrayRCP, and ArrayView allow for safe (debug
runtime checked) use of contiguous arrays of memory

• Much Trilinos software will be updated to use these new classes

• Deprecated features will be maintained along with a process for supporting
smooth and safe user upgrades

• A detailed technical report will be written to explain all of this

• More memory-safe classes will be added in the future

References:

[Martin, 2003] Robert C. Martin, Agile Software Development: Principles, Patterns,
and Practices, Prentice Hall, 2003

[Meyers, 2005] Scott Meyers, Effective C++: Third Edition, Addison-Wesley, 2005

[Sutter & Alexandrescu, 2005], C++ Coding Standards, Addison-Wesley, 2005

[Fowler, 199] Martin Fowler, Refactoring, Addison-Wesley, 1999

The End

THE END

Extra Slides

Reasonable Precautions:
C++ with Memory Safe Utility Classes vs. Python Mixed with C/C++

• Pure C++ program with memory safe classes

– Advantages:

• Native code gives instant performance

• One standard compiler, less mixed-language issues

– Disadvantages:

• Top level code is not 100% safe

• Java/Python mixed with C/C++

– Advantages

• Top level code is nearly 100% safe

– Disadvantages

• Native code is slow

• Mixed language, tools support problems, etc.

Before we make a mad rush to Java/Python for the sake of safer
memory usage lets take another look at making C++ safer

Value Semantics vs. Reference Semantics

A. Value Semantics

class S {
public:

S(); // Default constructor
S(const S&); // Copy constructor
S& operator=(const S&); // Assignment operator
…

};

– Used for small, concrete datatypes
– Identity determined by the value in the object, not by its object address (e.g. obj==1.0)
– Storable in standard containers (e.g. std::vector<S>)
– Examples: int, bool, float, double, char, std::complex, extended precision …

B. Reference Semantics

class A {
public:

// Pure virtual functions
virtual void f() = 0;
…

};

– Abstract C++ classes (i.e. has pure virtual functions) or for large objects
– Identity determined by the object’s address (e.g. &obj1 == &obj2)
– Can not be default constructed, copied or assigned (not storable in standard containers)
– Examples: std::ostream, any abstract base class, …

Persisting vs. Non-Persisting Associations

class ClientB {
UtilityBase *utility_;

public:
ClientB() : utility_(0) {}
~ClientB() { delete utility_; }
void initialize(UtilityBase *utility) { utility_ = utility; }
void g(const ClientA &a) { a.f(*utility_); }

};

ClientBClientA

UtilityBase

class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};

• Non-persisting associations:

– Use C++ references and Teucohs::Ptr

• Persisting associations:

– Use Teuchos::RCP

• Non-persisting association: An object association that only exists within a single
function call and no “memory” of the object persists after the function exits

• Persisting association: An object association that exists beyond a single function
call and where some “memory” of the object persists

• Examples:

UML class diagram

Non-persisting
association

Persisting
association

Teuchos::RCP

• RCP combines concepts of “smart pointers” and “reference counting” to build an
imperfect but effective “garbage collection” mechanism in C++

• Smart pointers mimic raw C++ pointer usage and syntax
– Value semantics: i.e. default construct, copy construct, assignment etc.
– Object dereference: i.e. (*ptr).f()
– Pointer member access: i.e. ptr->f()

– Conversions :
• Implicit conversions using templated copy constructor: i.e. C* to A*, and A* to const A*
• Explicit conversions: i.e. rcp_const_cast<T>(p), rcp_static_cast<T>(p),
rcp_dynamic_cast<T>(p)

• Reference counting
– Automatically deletes wrapped object when last reference (i.e. smart pointer) is deleted
– Watch out for circular references! These create memory leaks!
– Tip: Define the macro TEUCHOS_SHOW_ACTIVE_RCP_NODES

• RCP<T> is not a raw C++ pointer!
– Implicit conversions from T* to RCP<T> and visa versa are not supported!
– Failure of implicit casting and overload function resolution!
– Other problems …

• Advanced Features
– Template deallocation policy object

• Allows other an delete to be called to clean up
• Allows one smart pointer (i.e. boost::shared_ptr) to be embedded in a RCP

– Extra data
• Allows RCP to wrap classes that do not have good memory management (e.g. old Epetra)
• Allows arbitrary events to be registered to occur before or after the wrapped object is deleted

A

B1 B2

C

Implicit Casting with RCP : Common Problems/Mistakes

Passing RCP by non-const reference instead of by const reference

Failure to perform implicit conversion with overloaded functions

void foo7(RCP<A> &a);
void foo7(const RCP<A> &a);

void boo4() {
RCP<C> c = rcp(new C);
RCP<A> a = c;
foo7(a); // Okay, no cast
foo7(c); // Error, can not cast involving non-const reference
foo7(c); // Okay, implicit case involving const reference okay

}

Programming mistake!

RCP<A> foo9(const RCP<A> &a);
RCP<const A> foo9(const RCP<const A> &a);

RCP<A> boo5() {
RCP<C> c = rcp(new C);
return foo9(c); // Error, call is ambiguous!
RCP<A> a = c;
return foo9(a); // Okay, calls first foo9(…)
return foo9(rcp_implicit_cast<A>(c)); // Okay, calls first foo9(…)

}

A

B1 B2

C

A deficiency of
smart pointers

over raw pointers

Calls foo9(A* a) when

using raw C++ pointers!

