% SAND2007- 7237C

New Teuchos Utility Classes for Safer Memory
Management in C++

Roscoe A. Bartlett
Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos Users Group Meeting, November 6", 2007

Sandia
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, National
for the United States Department of Energy under contract DE-AC04-94AL85000. Laboratories

%‘ Current State of Memory Management in Trilinos C++ Code

» The Teuchos reference-counted pointer (RCP) class is being widely used

— Memory leaks are becoming less frequent (but are not completely gone => circular
references!)

— Fewer segfaults from uninitailized pointers ...

» However, we still have problems ...
— Segfaults from improper usage of arrays of memory (e.g. off-by-one errors etc.)

— Improper use of other types of data structures

* The core problem? => Ubiquitous high-level use of raw C++ pointers in our
application (algorithm) code!

« What | am going to address in this presentation:

— Adding additional Teuchos utility classes simular to Teuchos::RCP to encapsulate
usage of raw C++ pointers for:

 handling of single objects

- handling of contiguous arrays of objects) eiona
Laboratories

il '
} Outline

« Background

* High-level philosophy for memory management

« Existing STL classes

* Overview of Teuchos Memory Management Ultility Classes

« Challenges to using Teuchos memory management utility classes

 Wrap up

Sandia
m National
Laboratories

il '
} Outline

Background

— Background on C++
— Problems with using raw C++ pointers at the application programming level

High-level philosophy for memory management

Existing STL classes

Overview of Teuchos Memory Management Ultility Classes

Challenges to using Teuchos memory management utility classes

Wrap up

Sandia
m National
Laboratories

;,'

Popularity of Programming Languages

Position

Position

Ratings Delta

Dct 2007 |Oct 2006 Delta in Position||Programming Language Oct 2007 |Oct 2006 Status
| 1 | 1 | |Java |21.515% | +0.44% | A
2 2 C 14.591% | -3.07% | A
| 3 | 5 | 11 |{uisua|} Basic |11.155% | +1.44% | A
| 4 | 3 | | | |c++ | 9.584% | -1.48% | A
| 5 | 4 | | | |F'HF‘ | 9.498% | -0,36% | A
| 3 | & | |F'er| |5351f | -0.12% | A
| 7 | 8 | 1 |t:# |3?4Df |+EIE~8.-" |.ﬁ.
| 8 | 7 | | | |F'3rth|:|n | 3.433% | -0.03% | A
| El | 9 | |Java5u:ript | 2.685% | +0.45% | it
| 10 | 13 | 11t |Ru|:n,r | 2.386% | +1.30% | A
| 11 | 12 | 1 |F'|JSQL | 1.966% | +0.87% | A
| 12 | 15 | 11t |D | 1.594% | +0.96% | A
| 13 | 10 | 1 |Delphi | 1.539% | -0.61% | A
| 14 | 11 | 1 |sns | 1.383% | -0.67% | A
| 15 | 14 | | | |.ﬁ.E-.ﬁ.F‘ | 0.549% | +0.20% | A
| 16 | 18 | 11 |COE-OL | 0.683% | +0.14% | B
| 17 | 45 |III'IIIIII |Lua | 0.596% | +0.53% | B
| 15 | 16 | H |Lisp.-"5::herne | 0.572% | -0.05% | B
| 19 | 17 | H |.ﬁ.|:|a | 0.559% | 0.00% | B
| 20 | 21 | 1 |F|:|r'tran ||:|.445% |+|:|.|:|5% | B

Source: http://www.tiobe.com

The ratings are based on:

« world-wide availability of
skilled engineers

e available courses

« third party vendors

« C++is only the 4" most
popular language

» C is almost twice as popular
as C++ (so much for object-
oriented programming)

« Java and Visual Basic
popularity together are at least
4 times more popular than
C++

 Fortran is hardly a blip

— C++is 20 times more popular

— Java is 40 times more popular

m Sandia

National _
Laboratories

;,V

Declining Overall Popularity of C++

TIOBE Index History for Language C++

17.5

=
£ 150
=

B 145
=3

=

‘5 140

| =4
2136
5

m
= 130
=

E 120

1135
110
108

100

a5

tion of total hits (%)

Naormalized frac

2002 2003 2004 2005 2008 2007
Dates

The C++ Programming Language

» Highest Rating (since 2001): 17.531%
(3rd position, August 2003)

» Lowest Rating (since 2001): 9.584%
(4th position, October 2007)

TIOBE IndeXx History for Language C#

P
o
=1

S
m
2 o

w
ba
th

L Tl
m = o
a o o

225

| 2.00

s
o

1.50

1.25

1.00

0.75

025

2002 2003 2004 2005 2008 2007
Dates

The C# Programming Language

» Highest Rating (since 2001): 3.987%
(7th position, August 2007)

» Lowest Rating (since 2001): 0.384%
(22nd position, August 2001)

« C++ is about half as popular as it was 4 years ago!

=>|s C++is on it's way out? => Of course not, but it's popularity is declining!
« C# is more than twice as popular as it was 4 years ago

=> Will C# mostly replace C++? => Depends if C# expands past .NET!

Source: http://www.tiobe.com Ah) o

Laboratories

}' Implications for the Decline in Popularity of C++

* Fewer and lower-quality tools for C++ in the future for:
— Debugging?
— Automated refactoring?
— Memory usage error detection?
— Others?
* Fewer new hirers will know C++ in the future
— Bad news since C++ is already very hard to learn in the first place!
* Who is going to take over the maintenance of our C++ codes?

— However, the extremely low and declining popularity of Fortran does not
stop organizations from using it either ...

h

Sandia
National
Laboratories

%‘ The Good and the Bad for C++ for Scientific Computing

« The good:

— Better ANSI/ISO C++ compilers now available for most of our important
platforms

« GCC is very popular for academics, produces fast code on Linux
« Red Storm and the PGI C++ compiler
* efc...

— Easy interoperability with C, Fortran and other languages

— Very fast native C++ programs

— Precise control of memory (when, where, and how)

— Support for generics (i.e. templates), operator overloading etc.
« Example: Sacado! Try doing that in another language!

— If Fortran is so unpopular then why are all of our customers using it?
=> C++ will stay around for a long time if we are productive using it!

* The bad:
— Language is complex and hard to learn

National

— Memory management is still difficult to get right Sandia
m Laboratories

}' Preserving our Productivity in C++ in Modern Times

« Support for modern software engineering methodologies

» Test Driven Development (easy)

« Other modern software engineering practices (code reviews supported by
coding standards, etc.)

« Refactoring => No automated refactoring tools!
« Safe memory management

* Avoiding memory leaks

« Avoiding segmentation faults from improper memory usage
* Training and Mentoring?

 There is not silver bullet here!

Sandia
m National
Laboratories

-
Aactoring Support: The Pure Nonmember Function Interface Idiom

SANDIA REPORT
ﬁ;:lri\ln?tzsdu;-;ggge SAN D2007_4078 i Unifies the two idoms:

e — Non -Virtual Interface (NVI)
idiom [Meyers, 2005], [Sutter &

The Pure Nonmember Function Interface Alexandrescu, 2005]
Idiom for C++ Classes _
— Non-member Non-friend

Function idiom [Meyers, 2005],

FRoscoe A. Bartlett

— [Sutter & Alexandrescu, 2005]

ot By o s et o * Uses a uniform nonmember function

D ——— interface for very “stable” classes
(see [Martin, 2003] for this definition
of “stable”)

« Allows for refactorings to non-public
virtual functions without breaking
current client code

« Doxygen \relates feature attaches
link to nonmember functions to the
) Sandia National Laboratories classes they are used with.

Sandia
m National
Laboratories

il '
} Outline

Background

— Background on C++

— Problems with using raw C++ pointers at the application programming level

High-level philosophy for memory management

Existing STL classes

Overview of Teuchos Memory Management Ultility Classes

Challenges to using Teuchos memory management utility classes

Wrap up

Sandia
m National
Laboratories

i '
} Problems with using Raw Pointers at the Application Level

 The C/C++ Pointer:
Type *ptr;

* Problems with C/C++ Pointers

— No default initialization to null => Leads to segfaults
int *ptr;
ptr[20] = 5; // BANG!
— Using to handle memory of single objects
int *ptr = new int;
// No good can ever come of:
ptr++, ptr--, ++ptr, --ptr, ptr+i, ptr-i, ptrli]
— Using to handle arrays of memory:
int *ptr = new int[n];
// These are totally unchecked:
*(ptr++), *(ptr--), ptrli]
— Creates memory leaks when exceptions are thrown:
int *ptr = new int;
functionThatThrows (ptr) ;
delete ptr; // Will never be called if above function throws!
* How do we fix this?
— Memory leaks? => Reference counting! (not a 100% guarantee)
— Segfaults? => Memory checkers like Valgrind and Purify? (far from a 100% guarantee) i

}‘ Ineffectiveness of Memory Checking Utilities

« Memory checkers like Valgrind and Purify only know about stack and heap
memory requested from the system!

=> Memory managed by the library or the user program is totally unchecked
« Examples:
 Library managed memory (e.g. GNU STL allocator)

valgrind W library management regions Wrting into “management” regions Yalgrind ”
‘red zone” W memory given to application red zone

B untouched memory
N— I

—
Allocated from the heap by library using new[]

is not caught by valgrind!

* Program managed memory

#

) SUbE'arrafy givento Read/writing outside of slice will

subrountine for processin :

S P g never be caught by valgrind!
e —

One big array allocated from the heap by library using new(]

Sandia
i : : _
Memory checkers can never sufficiently verify your program! M) fetona

}‘ What is the Proper Role of Raw C++ Pointers?

AVOID USING RAW POINTERS AT THE APPLICATION PROGRAMMING LEVEL!

If we can’t use raw pointers at the application level, then how can we use them?
— Basic mechanism for communicating with the compiler
— Extremely well-encapsulated, low-level, high-performance algorithms

— Compatibility with other software (again, at a very low, well-encapsulated level)

For everything else, let’s use (existing and new) classes to more safely encapsulate
our usage of memory!

Sandia
m National
Laboratories

- '
} Outline

« Background

* High-level philosophy for memory management

« Existing STL classes

* Overview of Teuchos Memory Management Ultility Classes

« Challenges to using Teuchos memory management utility classes

 Wrap up

Sandia
m National
Laboratories

} emory Management: Safety vs. Cost, Flexibility, and Control

How important is a 100% guarantee that memory will not be misused?
Two kinds of features (i.e. guarantees)

— Memory access checking (e.g. array bounds checking etc.)
— Memory cleanup (e.g. garbage collection)

Extreme approaches:

— C: All memory is handled by the programmer, few if any language tools for safety

— Python: All memory allocation and usage is controlled and/or checked by the runtime

system
With a 100% guarantee comes with a cost in:

— Speed: Checking all memory access at runtime can be expensive (e.g. Matlab,
Python, etc.)

— Flexibility: Can’t place objects where ever we want to (e.g. no placement new)

— Control: Controlling exactly when memory is acquired and given back to the system

(e.g. garbage collections running at bad times can kill parallel scalability)

h

Sandia
National
Laboratories

& emory Management Philosophy: The Transportation Analogy

« Little regard for safely, just speed: Riding a motorcycle on the interstate (no
helmet, 100 MPH, doing a wheelie, in heavy traffic)

=> Coding in C/C++ with only raw pointers at the application programming level

* An almost 100% guarantee: Driving a reinforced tank (Styrofoam suite, racing
helmet, Hans neck system, 10 MPH max speed)

=> All coding in a language like Java or Python

* Reasonable safety precautions (not 100%), and speed: Driving in a car (using
a seat belt, driving speed limit, defensive driving, etc.)

How do we get there? => We can get there from either extreme ...

— Sacrificing speed & efficiency for safely: Go from the motorcycle to the car:
=> Coding in C++ with memory safe utility classes
— Sacrificing some safely for speed & efficiency: Going from the tank to the to the car:

=> Python or Java for high-level code, C/C++ for time critical operations

Before we make a mad rush to Java/Python for the sake of safer memory usage
lets take another look at making C++ safer

Sandia
m National
Laboratories

- '
} Outline

« Background

* High-level philosophy for memory management

« Existing STL classes

— What about std::vector?

* Overview of Teuchos Memory Management Ultility Classes

« Challenges to using Teuchos memory management utility classes

 Wrap up

Sandia
m National
Laboratories

Semantics of STL Containers: std::vector

;,,'

std: :vector<T> for continuous data

 Stored data type T must be a value type
— Default constructor: T: : T ()
— Copy constructor: T: : T (const T&)
— Assignment operator: T& T::operator=(const T&)
* Non-const std::vector<T>
std: :vector<T> v;
— Can change shape of the container (add elements, remove elements etc.)
— Can change element objects
 Const std::vector<T>
const std::vector<T> &cv = v;
— Can not change the shape of the container

— Can not change the elements
— Can only read elements (e.g. val = cv[il]);

Sandia
m National
Laboratories

} General Problems with using std::vector at Application Level

» Usage of std::vector is not checked

std: :vector<T> v;
al[i]; // Unchecked

*(a.begin()+i); // Unchecked
for (.. ; al.begin() != a2.end() ; ..) { ..} // Unchecked

« What about std::vector::at(i)?

// Are you going to write code like this?
#ifdef DEBUG

val = a.at(i); // Really bad error message if throws!
felse

val = ali];
#endif

« What about checking iterator access? => There is no equivalent to at(i)
» Specialized STL memory allocators disarm memory checking tools!

« What about a checked implementation of the STL?

— ltem 83, C++ Coding Standards: “Use a checked STL implementation”
— Achecked STL implementation is hard to come by, especially for GNU/Linux o
— This has to be part of your everyday programming toolbox! i) teons

%‘ Problems with using std::vector as Function Arguments

BN e —

Sub-arra;fgiven to
subrountine for processing

» Using a raw pointer to pass in an array of objects to modify
void foo (T V[], constint n)
— Allows function to modify elements (good)
— Allows for views of larger data (good)
— Requires passing the dimension separately (bad)
— No possibility for memory usage checking (bad)
« Using a std::vector to pass in an array of objects to modify
void foo(std::vector<T> &v)
— This allows functions to modify elements (good)
— Keeps the dimension together with data (good)
— Allows function to also add and remove elements (usually bad)
— Requires copy of data for subviews (bad)
« Using a std::vector to pass in an array of const objects
void foo(const std::vector<T> &v)
— Requires copy of data for subviews (bad)
— You are throwing away 95% of the functionality of std::vector! mh Sandia

Yes there is an
std::valarray class
but that has lots of

problems too!

National
Laboratories

il '
} Outline

Background

High-level philosophy for memory management

Existing STL classes

Overview of Teuchos Memory Management Ultility Classes

Introduction

Management of single objects

Management for arrays of objects

Usage of Teuchos utility classes as data objects and as function arguments

Challenges to using Teuchos memory management utility classes

Wrap up) o

Laboratories

}‘ Basic Strategy for Safer “Pointer Free” Memory Usage

« Encapsulate raw pointers in specialized utility classes

— In a debug build (--enable-teuchos-debug), all access to memory is checked at
runtime ... Maximize runtime checking and safety!

— In an optimized build (default), no checks are performed giving raw pointer
performance ... Minimize (eliminate) overhead!

» Define a different utility class for each major type of use case:
— Single objects (persisting and non-persisting associations)
— Containers (arrays, maps, lists, etc.)
— Views of arrays (persisting and non-persisting associations)
— efc ...
* Allocate all objects in a safe way (i.e. don’t call new directly at the application
levell)

— Use non-member constructor functions that return safe wrapped objects (See
SAND2007-4078)

» Pass around encapsulated pointer(s) to memory using safe conversions
between safe utility class objects

Definitions:

» Non-persisting association: Association that only exists within a single function call

» Persisting association: Association that exists beyond a single function call and where
some “memory” of the object persists Sandia
m National
Laboratories

il '
} Outline

Background

High-level philosophy for memory management

Existing STL classes

Overview of Teuchos Memory Management Ultility Classes

Introduction

Management of single objects

Management for arrays of objects

Usage of Teuchos utility classes as data objects and as function arguments

Challenges to using Teuchos memory management utility classes

Wrap up) o

Laboratories

}' Utility Classes for Memory Management of Single Classes

» Teuchos::RCP (Long existing class, first developed in 1997!)
RCP<T> p;
— Smart pointer class (e.g. usage looks and feels like a raw pointer)
— Uses reference counting to decide when to delete object
— Used for persisting associations with single objects
— Allows for 100% flexibility for how object gets allocated and deallocated
— Used to be called Teuchos::RefCountPtr
« See the script teuchos/refactoring/change-RefCountPtr-to-RCP-20070619.sh

» Teuchos::Ptr (New class)
void foo(const Ptr<T> &p);
— Smart pointer class (e.g. operator->() and operator*())
— Light-weight replacement for raw pointer T* to a single object
— Default constructs to null
— No reference counting! Used only for non-persisting association function arguments

— In a debug build, throws on dereferences of null

National

— Integrated with other memory utility classes Hh Sandia
Laboratories

;,V

Teuchos::RCP Technical Report

SAND REPORT
SAND2004-3268

mamss SAND2007-4078

Teuchos::RCP Beginner’s Guide

An Introduction to the Trilinos Smart

Reference-Counted Pointer Class for

(Almost) Automatic Dynamic Memory
Management in C++

Roscoe A. Bartlett
Optimization and Uncertainty Estimation

Prepared by
Sardia National Latoratories
Abuguerue. New Mexico 57185 and Livermore, Calfornia 34550

Sandia Is a multiprogram Iaboralory operated by Sanda Corporation,
3 Lockneed Mariin Company, for the Unied States Depariment of Energy's
National Nuear Security Administration uncer Contract DE-ACD4-84-AL35000

Approved for putlic reiease: fLrmer lssemnaton Limiea

@ Sandia National Laboratories

http://trilinos.sandia.gov/documentation.html

Sandia
National
Laboratories

<Derived> to <Base> !
<T> to <const T> L]

<Derived> to <Base> ,
<T> to <const T> 1 _ |

%j Conversions Between Single-Object Memory Management Types

Legend

<<implicit conversion>>

il '
} Outline

Background

High-level philosophy for memory management

Existing STL classes

Overview of Teuchos Memory Management Ultility Classes

Introduction

Management of single objects

Management for arrays of objects

Usage of Teuchos utility classes as data objects and as function arguments

Challenges to using Teuchos memory management utility classes

Wrap up) o

Laboratories

;4’-' Utility Classes for Memory Management of Arrays of Objects

» Teuchos::ArrayView (New class)
void foo (const ArrayView<T> &v);
— Used to replace raw pointers as function arguments to pass arrays
— Used for non-persisting associations only (i.e. only function arguments)
— Allows for 100% flexibility for how memory gets allocated and sliced up

» Teuchos::ArrayRCP (Failry new class)
ArrayRCP<T> v;
— Used for persisting associations with fixed size arrays
— Allows for 100% flexibility for how memory gets allocated and sliced up

— Uses same reference-counting machinery as Teuchos::RCP

» Teuchos::Array (Existing class but majorly reworked)
Array<T> v;
— A general purpose container class like std::vector (actually uses std::vector within)

— All usage is runtime checked in a debug build

— Gives up (sub)views as Teuchos::ArrayView objects =
Laboratories

%‘ Raw Pointers and [Array]RCP : const and non-const

Example: Z"ptr e Important Point: A pointer object 2 ptr of type
- A* is an object just like any other object with
an address --—-—------—--—-> A’s data | |value semantics and can be const or non-const
a _ptr a
Raw C++ Pointers RCP Remember
. this

typedef A* ptr A; equivalentto RCP<A> val :
typedef const A* ptr const A; equivalent to RCP<const A> cquivalence:

an address [---- > A’s data non-const pointer to non-const object
ptr A a _ptry; equivalent to RCP<A> a ptry;
A * a _ptry;
[EERGERES - > A's data const pointer to non-const object
const ptr A a _ptry; equivalent to const RCP<A> a ptry;
A * const a ptr;

an address |~~~/ RGN non-const pointer to const object
ptr const A a ptr; equivalent to RCP<const A> a ptr;
const A * a ptr;
[an address | >{ A’s data | const pointer to const object
const ptr const A a _ptry; equivalent to const RCP<const A> a ptr;

const A * const

a _ptry;

iy "’V
‘#A Teuchos::ArrayRCP

template<class T>
class ArrayRCP {
private:
T *ptr ; // Non-debug implementation
Ordinal lowerOffset ;
Ordinal upperOffset ;
RCP node *node ; // Reference counting machinery

» General purpose replacement for raw C++ pointers to deal with contiguous
arrays of data and uses reference counting

« Supports all of the good pointer operations for arrays and more:
++ptr, --ptr, ptr++, ptr--, ptr+=i // Increments to the pointer
*ptr, ptr[i] // Element access (debug checked)
ptr.begin(), ptr.end() // Returns iterators (debug checked)

» Support for const and non-const:

ArrayRCP<T> // non-const pointer, non-const elements
const ArrayRCP<T> // const pointer, const elements
ArrayRCP<const T> // non-const pointer, const elements

const ArrayRCP<const T> // const pointer, const elements

* Does not support bad pointer array operations:
ArrayRCP<Base> p2 = ArrayRCP<Derived> (rawPtr); // No compile!

« ArrayRCP is reused for all checked iterator implementations! i EaEIgE?I

_
}i Teuchos::ArrayView

template<class T>

class ArrayView {

private:
T *ptr ; // Non-debug implementation
Ordinal size ;

* Light-weight replacement for raw C++ pointers to deal with contiguous arrays of
data for use as function arguments

» Only support array dereferencing and iterators:
ptr[i] // Dereferencing the pointer to access elements
ptr.begin(), ptr.end() // Returns iterators (debug checked)

» Uses ArrayRCP for checked implementation!

» Support for const and non-const element access
ArrayView<T> // non-const elements
ArrayView<const T> // const elements

Sandia
m National
Laboratories

- "’V
% Teuchos::Array

template<class T>
class Array {
private:
std::vector<T> vec ; // Non-debug implementation

* Thin, inline wrapper around std::vector

Debug checked element access:

al[i] // Debug runtime checked

al[-1] // Throws exception in debug build!
ala.size()] // Throws exception in debug build!

Debug checked iterators (uses ArrayRCP):
*(ptr.begin()+i) // Debug runtime checked

* (ptr.begin-1) // Throws exception in debug build!
* (ptr.end()) // Throws exception in debug build!

Conversions to and from std::vector

Nonmember constructors
Array<T> a = tuple(objl,obj2,..);

Sandia
m National
Laboratories

‘#j Conversions Between Array Memory Management Types

RCP<std::vector<T> > [----------------

; : | <T> to

RCP<AI’I’ay<T> > r---- q ArrayRCP<T> ___: <const T>

Vi \\
/// - T* Dy \\\\
—————— 1 Vi - \NNN RN
I I ’ -~ - -
: 4 | 3 ’: _________________________ = = X
A Array<T>|___ T ArrayView<T> [« <> 4
- 7.1 <const T>
\\\\ \\\L ",f ,,’,,’

1 std::vector<T> ¢

Legend
<<implicit view conversion>>

Sandia
m National
Laboratories

- '
} Outline

Background

High-level philosophy for memory management

Existing STL classes

Overview of Teuchos Memory Management Ultility Classes

Introduction

Management of single objects

Management for arrays of objects

Usage of Teuchos utility classes as data objects and as function arguments

Challenges to using Teuchos memory management utility classes

Wrap up)

Laboratories

}‘ Class Data Member Conventions for Arrays

» Uniquely owned array, expandable (and contractable)
Array<T> a ;

« Shared array, expandable (and contractable)
RCP<Array<T> > a ;

« Shared array, fixed size
ArrayRCP<T> a ;

— Advantages:
* Your class object can allocate the array as arcp (size)
* Or, you class object can accept a pre-allocated array from client
=> Allows for efficient views of larger arrays

» The original array will be deleted when all references are removed!

Warning! Never use Teuchos: :ArrayView<T> as a class data member!
- ArrayView is never to be used for a persisting relationship!

— Also, avoid using ArrayView for stack-based variables

Sandia
National
Laboratories

-
}!unction Argument Conventions : Single Objects, Value or Reference

« Non-changeable, non-persisting, required
const T &a

« Non-changeable, non-persisting, optional
const Ptr<const T> &a

* Non-changeable, persisting , required or optional
const RCPLT> &a

« Changeable, non-persisting, optional
const Ptr<T> &a

« Changeable, non-persisting, required

const Ptr<T> &a

or
T &a

« Changeable, persisting, required or optional
const RCP<const T> &a

Increases the vocabulary of you program! => Self Documenting Code!

Even if you don’t want to use these conventions you still have to

document these assumptions in some way!) o
Laboratories

%‘ Function Argument Conventions : Arrays of Value Objects

* Non-changeable elements, non-persisting association
const ArrayView<const T> &a

* Non-changeable elements, persisting association
const ArrayRCP<const T> &a

» Changeable elements, non-persisting association
const ArrayView<T> &a

« Changeable elements, persisting association
const ArrayRCP<LT> &a

« Changeable elements and container, non-persisting association
const Ptr<Array<T> > &a

or
Array<T> &a

« Changeable elements and container, persisting association
const RCP<Array<T> > &a

Warning!
Never use const Array<T>§& => use ArrayView<const T>&

Never use RCP<const Array<T> >& => uUse ArrayRCP<const T>&
URY isGoraiores

il
%!unction Argument Conventions : Arrays of Reference Objects

* Non-changeable objects, non-persisting association
const ArrayView<const Ptr<const A> > &a

* Non-changeable objects, persisting association
const ArrayView<const RCP<const A> > &a
« Non-changeable objects, changeable pointers, persisting association
const ArrayView<RCP<const A> > &a
« Changeable objects, non-persisting association
const ArrayView<const Ptr<A> > ¢&a
« Changeable objects, persisting association
const ArrayView<const RCP<A> > ¢&a
« Changeable objects and container, non-persisting association
Array<Ptr<A> > &a or const Ptr<Array<Ptr<A> > > &a
« Changeable objects and container, persisting association
Array<RCP<A> > &a or const Ptr<Array<RCP<A> > > &a
« Changeable elements and container, persisting associations
const RCP<Array<RCP<A> > > &a

 And there are other use cases!

Sandia
National
Laboratories

- '
‘#. Outline

« Background

* High-level philosophy for memory management

« Existing STL classes

* Overview of Teuchos Memory Management Ultility Classes

« Challenges to using Teuchos memory management utility classes

 Wrap up

Sandia
m National
Laboratories

%‘ Challenges for Incorporating Teuchos Utility Classes

* More classes to remember
— However, this increases the vocabulary of your programming environment!
=> More self documenting code!
* Implicit conversions not supported as well as for raw C++ pointers
— Avoid overloaded functions involving these classes!
« Refactoring existing code?

— Internal Trilinos code? => Not so hard but we need to be careful

— External Trilinos (user) code? => Harder to upgrade “published” interfaces but
manageable [Folwer, 1999]

How can we smooth the impact of these and other refactorings?

Sandia
m National
Laboratories

%‘ Refactoring, Deprecated Functions, and User Support

« How can we refactor existing code?
=> Keep deprecated functions but ifdef them (supported for one release cycle?)
« Example: Existing Epetra function:

class Epetra MultiVector ({
public:
ReplaceGlobalValues (int NumEntries, double *Values, int *Indices);

b
 Refactored function:

class Epetra MultiVector ({
public:
// New function
ReplaceGlobalValues (const ArrayView<const double> &Values,
const ArrayView<const 1nt> &Indices);
#ifdef TRILINOS ENABLE DEPRICATED FEATURES
// Depricated function
ReplaceGlobalValues (int NumEntries, double *Values, int *Indices)
{ ReplaceGlobalValues (arrayView (Values,NumEntries),
arrayView (Indices, NumEntries)); }
#fendif

b

. Sandia
« How does this help users? M) fetona

- "’V
}- Refactoring, Deprecated Functions, and User Support

Upgrade process for user code:

1.
2.
3.

Add -DTRILINOS_ENABLE_DEPRICATED_FEATURES to build Trilinos and user code

Test user code (should compile right away)

Selectively turn off -DTRILINOS _ENABLE DEPRICATED FEATURES in user code and let
compiler show code that needs to updated, Example:

// UserFunc.cpp

#fundef TRILINOS ENABLE DEPRICATED FEATURES
#include “Epetra MultiVector.hpp”

void foo(Epetra MultiVector &V)

{

std: :vector<double> wvalues (n), ..
std: :vector<double> indices (n),; ..
V.ReplaceGlobalValues (n, &values[0], &indices[0]); // No compile

}
Fix a few function calls, Example:
V.ReplaceGlobalValues (values, indices); // Now this will compile!

Turn -DTRILINOS ENABLE DEPRICATED FEATURES back on and recompile
Run user tests and get all of them to pass before moving on [Fowler, 1999]
Repeat steps 3 through 6 for all user code until all deprecated calls are gone!

User code is incrementally and safely upgraded over time!

National
m Laboratories

il '
} Outline

« Background

* High-level philosophy for memory management

« Existing STL classes

* Overview of Teuchos Memory Management Ultility Classes

« Challenges to using Teuchos memory management utility classes

 Wrap up

Sandia
m National
Laboratories

- '
} Next Steps

» Finish development and testing of these Teuchos memory management utility
classes (arrays of contiguous memory)

* Incorporate them into a lot of Trilinos software

— Initially: teuchos, rtop, thyra, stratimikos, rythmos, moocho, ...

— Get practical experience in the use of the class and refine design

« Write a detailed technical report describing these memory management classes

« Encourage the assimilation of these classes into more Trilinos and user software
(much like was done for Teuchos::RCP)

— Prioritize based on risk and other factors
« Start developing other memory safe utility classes:

— Teuchos::Map: Safe wrapper around std::map
— Teuchos::List: Safe wrapper around std::list

— Others?

Make memory leaks and segfaults a rare occurrence!

Sandia
m National
Laboratories

V" '
Conclusions

Using raw C++ pointers at too high of a level is the source of nearly all memory
management and usage issues (e.g. memory leaks and segfaults)

STL classes are not safe and their use can make code actually less safe than
when using raw C++ pointers (i.e. library handled memory allocation)

Memory checking tools like Valgrind and Purify will never be able to sufficiently
verify our C++ programs

Declining popularity of C++ means we will have less support for tools for
refactoring, debugging, memory checking, etc.

Teuchos::RCP has been effective at reducing memory leaks of all kinds but we
still have segfaults (e.g. array handling, off-by-one errors, etc.)

New Teuchos classes Array, ArrayRCP, and ArrayView allow for safe (debug
runtime checked) use of contiguous arrays of memory

Much Trilinos software will be updated to use these new classes

Deprecated features will be maintained along with a process for supporting
smooth and safe user upgrades

A detailed technical report will be written to explain all of this

More memory-safe classes will be added in the future Sandia
m National
Laboratories

The End

THE END

[Martin, 2003] Robert C. Martin, Agile Software Development: Principles, Patterns,
and Practices, Prentice Hall, 2003

[Meyers, 2005] Scott Meyers, Effective C++: Third Edition, Addison-Wesley, 2005
[Sutter & Alexandrescu, 2005], C++ Coding Standards, Addison-Wesley, 2005
[Fowler, 199] Martin Fowler, Refactoring, Addison-Wesley, 1999

References:

Sandia
m National
Laboratories

Extra Slides

' Reasonable Precautions:
} C++ with Memory Safe Utility Classes vs. Python Mixed with C/C++

* Pure C++ program with memory safe classes
— Advantages:
» Native code gives instant performance
» One standard compiler, less mixed-language issues
— Disadvantages:
» Top level code is not 100% safe
» Java/Python mixed with C/C++
— Advantages
 Top level code is nearly 100% safe
— Disadvantages
» Native code is slow
» Mixed language, tools support problems, etc.

Before we make a mad rush to Java/Python for the sake of safer
memory usage lets take another look at making C++ safer h Santia

National _
Laboratories

%‘ Value Semantics vs. Reference Semantics

A. Value Semantics

class S {

public:
S(); // Default constructor
S (const S&); // Copy constructor
S& operator=(const S&); // Assignment operator

i
— Used for small, concrete datatypes

— ldentity determined by the value in the object, not by its object address (e.g. obj==1.0)

— Storable in standard containers (e.g. std::vector<S>)
— Examples: int, bool, float, double, char, std::complex, extended precision ...

B. Reference Semantics

class A {

public:
// Pure virtual functions
virtual void f£() = 0;

};

— Abstract C++ classes (i.e. has pure virtual functions) or for large objects
— ldentity determined by the object’s address (e.g. &obj1 == &obj2)

— Can not be default constructed, copied or assigned (not storable in standard containers)

— Examples: std::ostream, any abstract base class, ... fh

Sandia
National
Laboratories

‘#‘I Persisting vs. Non-Persisting Associations

* Non-persisting association: An object association that only exists within a single
function call and no “memory” of the object persists after the function exits

* Persisting association: An object association that exists beyond a single function
call and where some “memory” of the object persists

« Examples:
class ClientA {
public:

—>void f(const UtilityBase &utility) const { utility.f(); }
b

class ClientB {
UtilityBase *utility ;<

public:
ClientB() : utility (0) {}
~ClientB() { delete utility ; }
void initialize(UtilityBase *utility) { utility = utility; } 4]

void g(const ClientA &a) { a.f(*utility); } <
b

* Non-persisting associations;:

ClientA [g--------m--------1 ClientB — Use C++ references and Teucohs::Ptr
‘ * Persisting associations:
— Use Teuchos::RCP

> UtilityBase
Persisting

] Sandi
UML class diagram association h P:E';,"I",:?.',,ies

Non-persisting
association

}- Teuchos::RCP

« RCP combines concepts of “smart pointers” and “reference counting” to build an
imperfect but effective “garbage collection” mechanism in C++

« Smart pointers mimic raw C++ pointer usage and syntax A <]_\
— Value semantics: i.e. default construct, copy construct, assignmentetc. | Bl B2
— Object dereference: i.e. (*ptr) .f () ZF L%
— Pointer member access:i.e. ptr—->£ () C
— Conversions :

 Implicit conversions using templated copy constructor: i.e. C* to A*, and A* to const A*
+ Explicit conversions: i.e. rcp const cast<T>(p), rcp static cast<T>(p),
rcp dynamic cast<T> (p)

Reference counting
— Automatically deletes wrapped object when last reference (i.e. smart pointer) is deleted

— Watch out for circular references! These create memory leaks!
— Tip: Define the macro TEUCHOS SHOW ACTIVE RCP _NODES

RCP<T> is not a raw C++ pointer!
— Implicit conversions from T* to RCP<T> and visa versa are not supported!
— Failure of implicit casting and overload function resolution!
— Other problems ...

Advanced Features

— Template deallocation policy object

» Allows other an delete to be called to clean up

+ Allows one smart pointer (i.e. boost: :shared ptr)to be embedded in a RCP
— Extra data

» Allows RCP to wrap classes that do not have good memory management (e.g. old Epetra)
e Allowe arbitrarv avaente tn he redictarad to oceciir bafare nr aftar the wranned abhieact iec AdAaletad

&‘ Implicit Casting with RCP : Common Problems/Mistakes

Passing RCP by non-const reference instead of by const reference

void foo7 (RCP<A> &a) ; Programming mistake! ~ Ak
void foo7 (const RCP<A> &a);
Bl B2
void boo4d () {
RCP<KC> ¢ = rcp(new C); Z% C 4&
RCP<A> a = c;
foo7(a); // Okay, no cast
foo7(c); // Error, can not cast involving non-const reference
foo7(c); // Okay, implicit case involving const reference okay
}
Failure to perform implicit conversion with overloaded functions
RCP<A> foo9 (const RCP<A> &a) ; A deﬁCienCy of
RCP<const A> foo9(const RCP<const A> &a); smart pointers
over raw pointers
RCP<A> boo5 () {

RCP<C> ¢ = rcp(new C); Calls foo9 (A* a) when

return foo9(c); // Error, call is ambiguous!) Ct+t int :
RCP<A> a = c; using raw pointers!
return foo9(a); // Okay, calls first foo9(..)

return foo9 (rcp implicit cast<A>(c)); // Okay, calls first foo9(..)

Sandia
m National
Laboratories

