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electron acceptor/donor
Incorporated in polymer as 
a small molecule dopant

Radiation induced electrons 
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Two Approaches for Radiation 
Tolerant Devices

1. Engineer radiation tolerant 
polymers for the device

2. Develop polymeric composites 
to shield devices from 
radiation exposure

• Incorporate small molecules dopants to 
reduce Radiation Induced Conductivity 
(RIC)

• Dopants “trap” electrons or “fill” holes
• Focus on polymer films
• Utility for thin films, coatings, 

encapsulants, underfills, etc

• High-Z particulate fillers with polymeric 
matrix for shielding composites

• Loadings from 1 to 50 volume % 
depending on radiation environment 
and the specific application

• Polymer composites provide processing 
flexibility for wide range of applications

• structural composite for system level 
shielding

• Localized encapsulant / coating for 
particularly sensitive devices



Radiation Tolerant Polymeric films

What causes RIC?

What makes an electron trap?

How do we incorporate the trap?
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Mobile electrons upon 
radiation exposure

Incorporate electron 
trapping molecules

Aromatic core with 
pendant electron 

withdrawing groups

Trinitrofluorenone 
(TNF)

Identify candidates
with nitro- or cyano-

groups

Nitroacenaphthene
(NAN)

Tetracyanoquinodimethane
(TCQM)

Immerse polymer in solvent-
dopant solution

Adsorption-diffusion process
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• Aromatic core with pendant withdrawing 
groups are effective (electron traps)

• NO2 more effective than CN

• Adsorption-diffusion process

https://sharepoint.sandia.gov/sites/Radiation-Hardened-Materials/team/Dopants/Various%20Sized%20Ring%20Structures/Nitropyrene.gif
https://sharepoint.sandia.gov/sites/Radiation-Hardened-Materials/team/Dopants/Various%20Sized%20Ring%20Structures/Nitroacenaphthene.gif


Science to Application
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1. Develop adsorption – diffusion 
model to extract Ddop and Kads

2. Investigate concentration 
dependence of RIC

3. Use information to 
outline processing 
windows and design 
pilot – scale 
manufacturing operation



Radiation Shielding with Particulate 
Filled Polymer Composite Encapsulants, 

Coatings, Structural Materials

Advantages

• Reduced mass / volume

• Localized shielding

• Simple and flexible 
processing for wide 
range of applications

• Complex geometries

Objective

• Develop polymer composites 
composed of high-Z fillers 
dispersed in polymer matrix

• Verify radiation shielding 
performance

• Investigate processing 
approaches

Issue

• Need for devices to 
function in various 
radiation environments

• Need flexible processing 
approaches and light 
weight materials

O % 1O % 2O % 3O % 4O % 5O %

Electron Shielding

EMI Shielding / Conductivity

X-ray, Gamma, Proton Shielding

Shielding from a variety of 
radiation environments



X-ray / Gamma Radiation Attenuation

1. 0 to 50 vol% tungsten loading in silicone

2. Attenuation measured for ~ 1.3 MeV gamma radiation

3. Calculated mass attenuation coefficients from NIST data base

4. Excellent agreement between measured and predicted attenuation 
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• Modeling in combination with attenuation 
measurements will enable us to focus on 
relevant tungsten loading and coating 
thickness

• Higher loadings are most effective
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Proton Shielding

• Measure dose with TLD behind 
composite

• Composite can reduce dose with 
low energy protons (< 60 MeV)

• High loadings and thick 
composites are better

• Measure upsets of integrated circuit 
behind composite 

• Composite can reduce upsets with 
low energy protons (< 60 MeV)

• High loadings and thick composites 
are better



Initial Electron Shielding Results
1. 0 to 50 vol% tungsten loading in silicone polymer resin

2. Calculated electron attenuation at (7 MeV narrow distribution)

3. Measured attenuation for higher energy electrons (30 MeV broad 
distribution) 

Conclusion:  It is feasible to design tungsten loaded polymer 
composite with superior electron shielding ability and lower density 
than Aluminum (polymer chemistry is flexible ie. epoxy, silicone, 
others)
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Low Density Composites for 
Electron Shielding

Minimize 
filler loading 
for effective 

shielding

Step 1:
• Investigate tungsten / tantalum loadings of   

0 to 10 vol%
• Utilize minimum filler loading to obtain 

adequate shielding ability

Step 2:
• Incorporate mixed filler strategy to further 

reduce composite mass
• Small tungsten / tantalum loading
• High loading of glass microballoons (GMB)

Polymer density ~ 1.05 g/cc

Tungsten density ~ 19.3 g/cc
Tantalum density ~ 16.1 g/cc

GMB density ~ 0.16 g/cc

• GMB / Tungsten composites less dense 
than Aluminum and provide superior 
shielding (verified with 10%)

• How will GMB impact attenuation

• 40 vol% filler loading is still reasonable 
polymer viscosity for processing

composite composite composite Percent Change

volume fractions density (with GMB) density (no GMB) with GMB

GMB W silicone
0.38 0.02 0.6 1.0768 1.415 -24

0.36 0.04 0.6 1.4596 1.78 -18

0.34 0.06 0.6 1.8424 2.145 -14

0.32 0.08 0.6 2.2252 2.51 -11

0.3 0.1 0.6 2.608 2.875 -9

density (g/cc)

GMB W silicone Al

0.16 19.3 1.05 2.7



Electron Attenuation with Tungsten / 
GMB Composites

Incident
Electrons

Thin Al
mounting plate
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detector
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1.0 MeV incident electrons 2.5 MeV incident electrons

• Thicker composites and higher tungsten loadings 
increase attenuation

• All thickness and loadings provide some attenuation with 
1.0 MeV electrons

• Thicker films and higher tungsten loadings required for 
attenuation of 2.5 MeV electrons

• Inclusion of GMB decreases attenuation (air verses 
silicone resin or microstructure?)



Processing Approach

Path 1:
• Traditional “Spray Applied” coating
• Polymer/filler mixture in solvent 

sprayed onto surface with solvent 
evaporation

• Challenge: Optimizing process to 
spray uniform polymer-filler coating

Path 2:
• Non-traditional “Brush Applied” coating
• Polymer/filler mixture rolled or brushed 

onto surface
• Challenge: avoid damaging sensitive 

electronic devices

Integrated circuit-sensor

Integrated circuit-sensor

1. Current Approach: Mix, degas, pour, and cure
2. Exploring incorporating fillers into pre-preg for structural composites
3. Need additional processing avenues to enable all potential applications



Conformal coatings for localized “spot” shielding 
offer potential for large weight savings

Integrated circuit-sensor

Conformal coating

Integrated circuit-sensor

Tungsten filled conformal coating

Integrated circuit-sensor

Electrically isolating base coating

Tungsten filled overlayer

Advantages
• Single step processing
• Integrate with current conformal coatings

Challenges
• Particulate settling
• Conductivity in conformal coating

Advantages
• Simple implementation
• Less concerns with particle 

distribution and layer conductivity

Challenges
• Additional processing step
• Overlayer-base coat compatibility

1.

2.

Uses for Polymer Composites:
• Structural composites for global shielding
• Conformal coatings for “spot” shielding

0.1”

0.005” settling zone

Issues for Spot Shielding
• Settling
• Transparency



Processing / particle dispersion of composites can 
be controlled through particle and resin properties.
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• Processablility and microstructure can be controlled 
through particle type, shape, size, size distribution, 
loading, polymer Mw, processing additives.
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Solutions
• Less dense particles (higher loadings 

to increase viscosity, smaller Vt)

• Sub-micron to nano-particulates 
(smaller Vt, less transparency)

• Increase viscosity (longer Mw 
monomers, narrow particle size 
distribution, odd-shaped particles)

• High-Z oxide particulates (avoid 
electrical conductivity)



Summary
1. Two approaches for operation of electronic devices in 

radiation environments
• Radiation tolerant polymers
• High-Z filled polymeric composites

2. Radiation tolerant polymers
• Incorporate electron traps / donors
• Focus on polymer dielectrics

3. Particulate filled high-Z / polymer matrix composites
• Effective at shielding X-rays, Gammas, Protons, Electrons

• X-rays, Gammas, Protons require higher loadings

• Proton shielding sweet spot (10 to 60 MeV)

• Electron shielding with low loadings (<10 volume %)

• Mixed GMB / tungsten composites for lower density

• Future work to identify and refine potential processing strategies to 
enable wide range of potential applications


