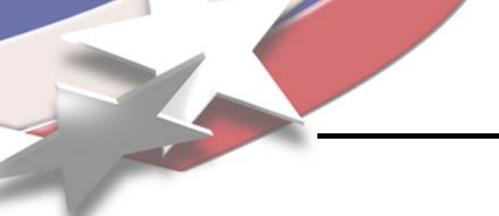


Push-pull PDV analysis

Sub-fringe data reduction

PDV workshop
August 16-17, 2007

Daniel H. Dolan and Scott Jones



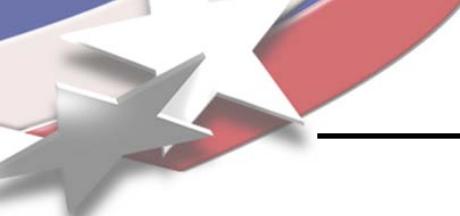
The uncertainty principle

- To date, most PDV applications use time-frequency analysis
 - Sliding FFT, etc.
 - Velocity-time resolution limited by uncertainty principle
- Fractional uncertainty related to the number of fringes within the sliding window (τ)
 - At least eight fringes needed for 1% velocity precision
 - 1 km/s: $T=0.775$ ns, >6.2 ns window
 - 1 m/s: $T=755$ ns, >6200 ns window?!
- Sub-fringe analysis is needed for low velocity transients
 - Radiation effects
 - Elastic precursor/phase transitions

Gaussian window, no noise, constant velocity

$$\underbrace{(\delta v) (\delta t)}_{\sim \tau} > \frac{\lambda_0}{8\pi}$$

$$\frac{\delta v}{v} > \frac{1}{4\pi} \frac{T}{\tau} \quad \left(T = \frac{\lambda_0}{2v} \right)$$



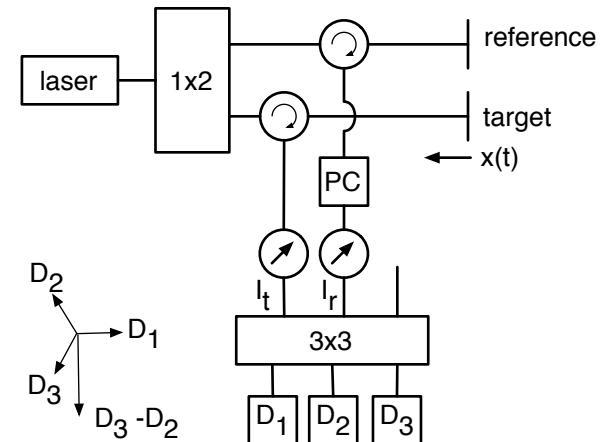
Solution: calculate fringe shift directly

- Velocity can be calculated directly from the fringe shift
 - Fringe shift is proportional to displacement
 - Numerical differentiation required...
 - Only a single source can be tracked without contrast loss
- Method needs to handle:
 - Intensity variations
 - Incoherent light
 - Imperfect contrast
- Single channel PDV only works in ideal situations
 - Phase ambiguity is still a problem
- Like the transition from WAMI to VISAR, multiple signals are required

$$F(t) = 2 \frac{x(t) - x(t_i)}{\lambda_0}$$

Three-phase measurements

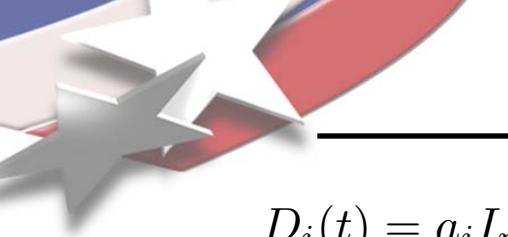
- 3 x 3 fiber coupler provides phase shifted output
 - Bruce Marshall discussed this last year
 - Signal pairs can be used obtain quadrature
- Reference intensity assumed to be completely coherent and constant
- Target intensity can be time dependent, and may contain an incoherent contribution
- No beam intensity is used--it wouldn't be useful anyway!
 - Unlike VISAR, target and reference light do NOT share time dependence.



Dolan and Jones, Rev. Sci. Instrum. 78, 76102 (2007).

$$D_i(t) = a_i I_r + b_i I_t(t) + 2\sqrt{a_i b_i I_r I_c(t)} \cos(\Phi(t) - \beta_i) \quad i = 1, 2, 3$$

Parameters a and b include 3 x 3 coupler and detector sensitivity



Push-pull approach

$$D_i(t) = a_i I_r + b_i I_t(t) + 2\sqrt{a_i b_i I_r I_c(t)} \cos(\Phi(t) - \beta_i) \quad i = 1, 2, 3$$

- **Goal: Remove offset and amplitude variation**

- **Step 1: subtract off reference offset**
 - **Step 2: construct signal pairs**
 - **Step 3: take pair ratios to eliminate intensity from the problem**

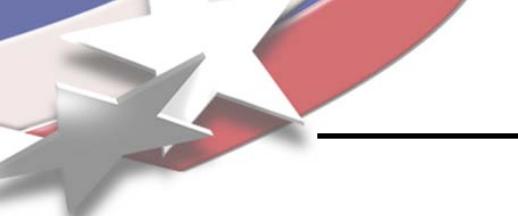
$$\begin{aligned}\tilde{D}_i(t) &\equiv D_i(t) - D_i^{(t)} \\ &= b_i I_t(t) + 2\sqrt{a_i b_i I_r I_c(t)} \cos(\Phi(t) - \beta_i)\end{aligned}$$

$$\begin{aligned}\tilde{D}_{ij} &\equiv \tilde{D}_i - \frac{b_i}{b_j} \tilde{D}_j = 2\sqrt{a_i b_i I_r I_c(t)} \\ &\times \left[\cos(\Phi(t) - \beta_i) - \sqrt{\frac{a_j}{a_i} \frac{b_i}{b_j}} \cos(\Phi(t) - \beta_j) \right]\end{aligned}$$

- **Conventions:**

- **Signal $i=1$ is reference phase**
 - **Signal $j=2$ leads signal 1**
 - **Signal $k=3$ lags signal 1**

$$\frac{\tilde{D}_{ij}}{\tilde{D}_{ik}} = \frac{\cos(\Phi(t) - \beta_i) - \sqrt{\frac{a_j}{a_i} \frac{b_i}{b_j}} \cos(\Phi(t) - \beta_j)}{\cos(\Phi(t) - \beta_i) - \sqrt{\frac{a_k}{a_i} \frac{b_i}{b_k}} \cos(\Phi(t) - \beta_k)}$$



An intimidating result...

$$\tan \Phi(t) = \frac{D_y(t)}{D_x(t)} = \frac{\left(\sqrt{\frac{\hat{a}_2}{\hat{b}_2}} \cos \beta_+ - \sqrt{\frac{\hat{a}_3}{\hat{b}_3}} \cos \beta_- \right) \tilde{D}_1 - \left(\frac{1 - \sqrt{\frac{\hat{a}_3}{\hat{b}_3}} \cos \beta_-}{\hat{b}_2} \right) \tilde{D}_2 + \left(\frac{1 - \sqrt{\frac{\hat{a}_2}{\hat{b}_2}} \cos \beta_+}{\hat{b}_3} \right) \tilde{D}_3}{\left(\sqrt{\frac{\hat{a}_2}{\hat{b}_2}} \sin \beta_+ + \sqrt{\frac{\hat{a}_3}{\hat{b}_3}} \sin \beta_- \right) \tilde{D}_1 - \left(\sqrt{\frac{\hat{a}_3}{\hat{b}_3}} \frac{\sin \beta_-}{\hat{b}_2} \right) \tilde{D}_2 - \left(\sqrt{\frac{\hat{a}_2}{\hat{b}_2}} \frac{\sin \beta_+}{\hat{b}_3} \right) \tilde{D}_3}$$

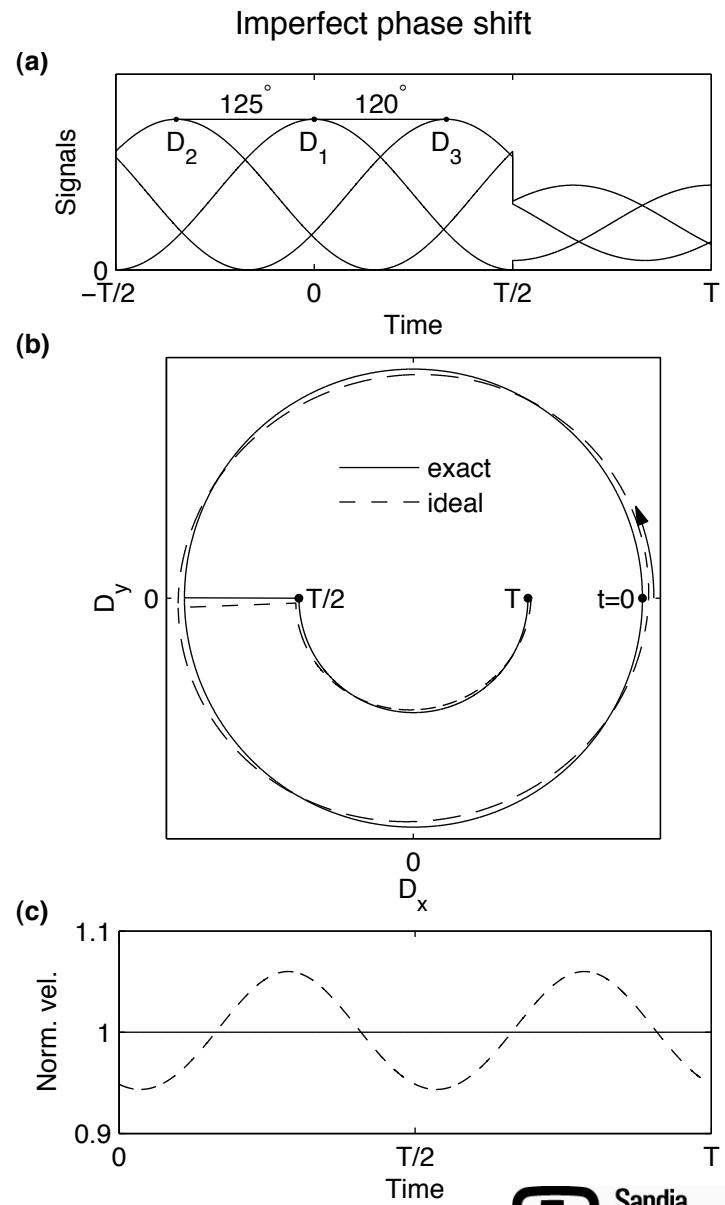
Quadrature signals D_x and D_y are weighted sums of the recorded signals (ref. offsets removed)

- **Seven parameters needed**
 - Phase shifts and some combination of coupling ratios, beam block measurements, and ellipse parameters
- Reduces to a simple result in ideal conditions
 - Loss-less, symmetric coupler
 - Identical detectors
- Why bother with the complicated solution?

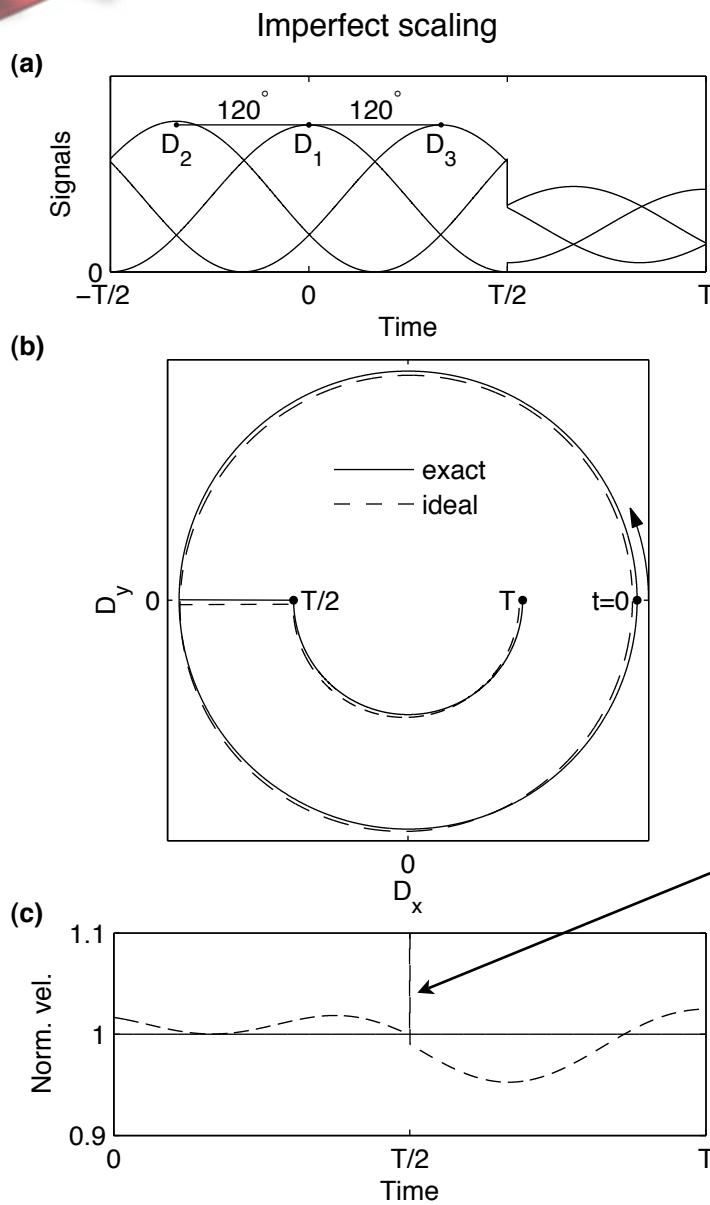
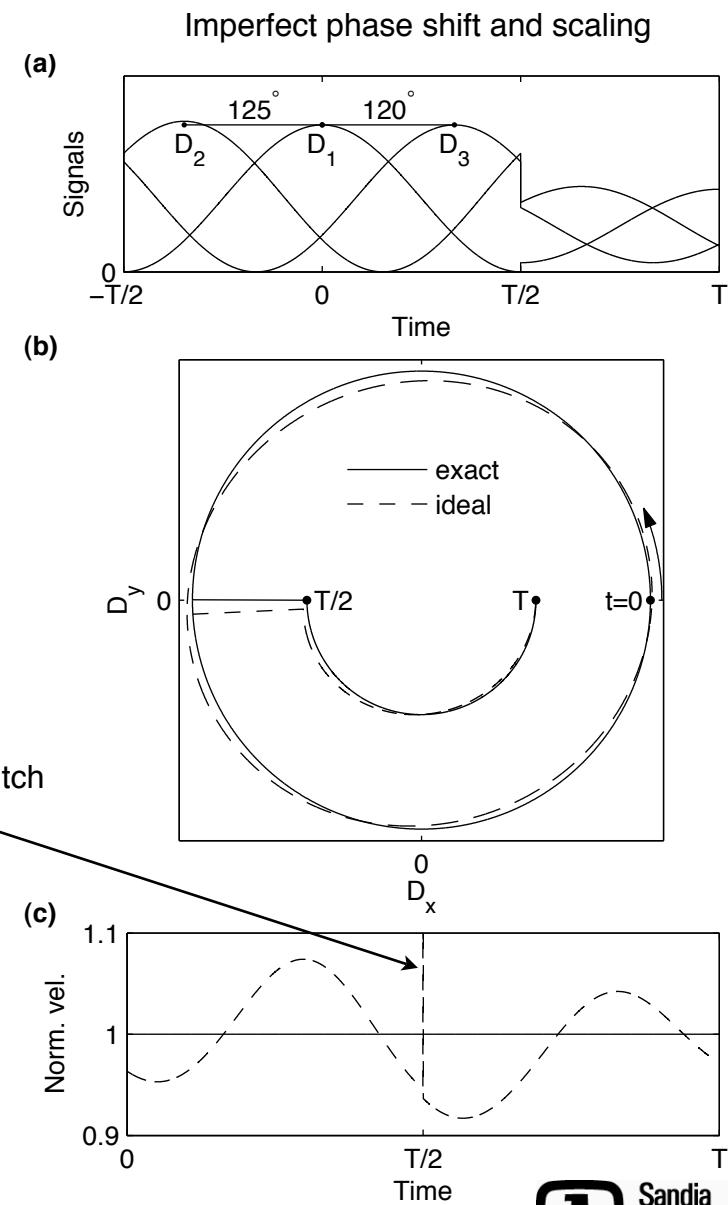
$$\tan \Phi(t) = \sqrt{3} \frac{D_3(t) - D_2(t)}{2D_1(t) - D_2(t) - D_3(t)}$$

Simple example

- Constant velocity
 - Fringe period T ($v = \lambda_0/2T$)
 - Purely coherent input
 - Reference/target intensities match until $t=T/2$
 - Target light reduced to 25% of its initial value after $T/2$
- Consider imperfect phase shift
 - Ideal analysis yields a non-circular ellipse ($\sqrt{3}/2$ scaling)
 - Calculated velocity oscillates about the true value
 - Equal area constructions (e.g., Kepler's second law)



Unequal coupling effects (5% variation)



What about that numerical derivative?

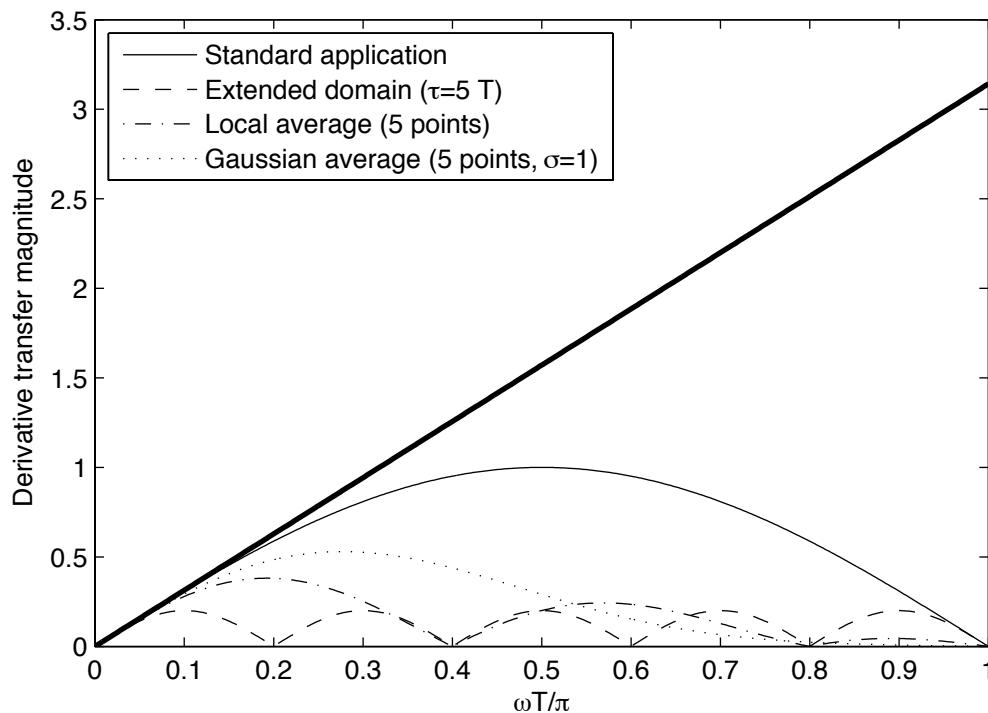
- **High frequency noise amplification is intrinsic to numerical derivatives**
 - Data smoothing typically required
 - Time resolution sacrifice!
- **Considerations**
 - **Oversampling: how much faster is limiting velocity than the velocity of interest?**
 - **Signal-noise ratio**
 - **Dynamic range (8 bit limitation)**
 - **Similar issues in VISAR displacement mode**

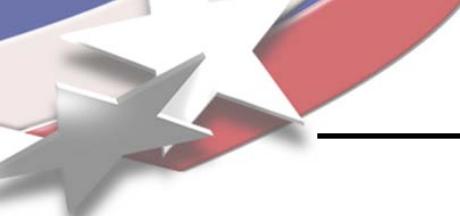
See Hemsing, SPIE 1346, p. 141 (1990).

Frequency transfer function

$$F'(\omega) = [-i\omega]F(\omega)$$

Centered finite difference derivative



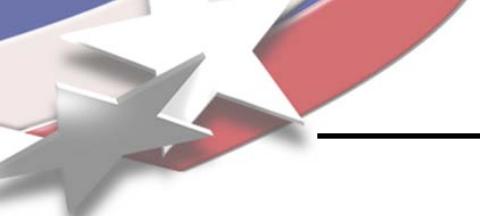


A question of time scales

- There is no information in a single point of a PDV measurement
 - Velocity calculation requires several data points
 - A time scale must be introduced into the problem
 - VISAR does this in hardware, we must do it in software
 - Uniqueness will always be an issue
- Sampling interval is never the limiting time resolution
 - Detection threshold: how long before motion can be distinguished from noise?
 - ~1 ps at 1 km/s (1/128 noise threshold)
 - Fringe threshold: how long to detect a complete fringe?
 - ~775 ps at 1 km/s
 - For good SNR, push-pull analysis can be useful
 - Smoothing reduces time resolution to several sampling intervals

$$\Delta t_{min} > \frac{\lambda_0}{4\pi\bar{v}} \frac{\delta D}{A}$$

$$\Delta t_F = \frac{\lambda_0}{2\bar{v}}$$



Summary

- Push-pull analysis of multiple phase PDV measurements works on shorter time scales than time-frequency analysis
 - Only one source can be tracked
 - Intensity variations do not matter
- A lot more system characterization is needed
 - Beam-block measurements
 - Lissajous patterns/ellipse fitting
 - Improper characterization yields velocity oscillations
- Numerical differentiation needed to determine velocity
 - Signal noise is an issue
- PDV analysis introduces an arbitrary time scale to the problem
 - Limiting time resolution is not the sampling interval