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• To date, most PDV applications use time-
frequency analysis
– Sliding FFT, etc.
– Velocity-time resolution limited by 

uncertainty principle
• Fractional uncertainty related to the number 

of fringes within the sliding window (τ)
– At least eight fringes needed for 1% 

velocity precision
– 1 km/s: T=0.775 ns, >6.2 ns window
– 1 m/s: T=755 ns, >6200 ns window?!

• Sub-fringe analysis is needed for low velocity 
transients
– Radiation effects
– Elastic precursor/phase transitions

The uncertainty principle

Jensen et al., J. Appl. Phys. 101, 13523 (2007).
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Solution: calculate fringe shift directly

• Velocity can be calculated directly from the fringe shift
– Fringe shift is proportional to displacement
– Numerical differentiation required...
– Only a single source can be tracked without  contrast loss

• Method needs to handle:
– Intensity variations
– Incoherent light
– Imperfect contrast

• Single channel PDV only works in ideal situations
– Phase ambiguity is still a problem

• Like the transition from WAMI to VISAR, multiple signals are required

F (t) = 2
x(t)− x(ti)
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Three-phase measurements

• 3 x 3 fiber coupler provides phase shifted output
– Bruce Marshall discussed this last year
– Signal pairs can be used obtain quadrature

• Reference intensity assumed to be completely 
coherent and constant

• Target intensity can be time dependent, and may 
contain an incoherent contribution

• No beam intensity is used--it wouldn’t be useful 
anyway!
– Unlike VISAR, target and reference light do 

NOT share time dependence.

Di(t) = aiIr + biIt(t) + 2
√

aibiIrIc(t) cos (Φ(t)− βi) i = 1, 2, 3

Parameters a and b include 3 x 3 coupler and detector sensitivity

Dolan and Jones, Rev. Sci. Instrum. 
78, 76102 (2007).



 

Push-pull approach

• Goal: Remove offset and amplitude 
variation
– Step 1: subtract off reference 

offset
– Step 2: construct signal pairs
– Step 3: take pair ratios to 

eliminate intensity from the 
problem

• Conventions:
– Signal i=1 is reference phase
– Signal j=2 leads signal 1
– Signal k=3 lags signal 1
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An intimidating result...

• Seven parameters needed
– Phase shifts and some combination of coupling 

ratios, beam block measurements, and ellipse 
parameters

• Reduces to a simple result in ideal conditions
– Loss-less, symmetric coupler
– Identical detectors

• Why bother with the complicated solution?
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â2
b̂2

cos β+

b̂3



 D̃3

(√
â2
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Quadrature signals Dx and Dy are weighted sums of the recorded signals (ref. offsets removed)
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Simple example

• Constant velocity
– Fringe period T (v=λ0/2T)
– Purely coherent input
– Reference/target intensities match until 

t=T/2
– Target light reduced to 25% of its initial 

value after T/2

• Consider imperfect phase shift
– Ideal analysis yields a non-circular 

ellipse (sqrt(3)/2 scaling)
– Calculated velocity oscillates about the 

true value
• Equal area constructions (e.g., 

Kepler’s second law)

Imperfect phase shift
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Unequal coupling effects (5% variation)
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Imperfect phase shift and scaling
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Imperfect scaling

Derivative glitch



 

What about that numerical derivative?

• High frequency noise amplification 
is intrinsic to numerical derivatives
– Data smoothing typically 

required
– Time resolution sacrifice! 

• Considerations
– Oversampling: how much faster 

is limiting velocity than the 
velocity of interest?

– Signal-noise ratio
– Dynamic range (8 bit limitation)

• Similar issues in VISAR 
displacement mode

F ′(ω) = [−iω]F (ω)
Frequency transfer function
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Standard application
Extended domain (#=5 T)
Local average (5 points)
Gaussian average (5 points, $=1)

Centered finite difference derivative

See Hemsing, SPIE 1346, p. 141 (1990).



 

A question of time scales

• There is no information in a single point of a PDV measurement
– Velocity calculation requires several data points
– A time scale must be introduced into the problem

• VISAR does this in hardware, we must do it in software
– Uniqueness will always be an issue

• Sampling interval is never the limiting time resolution
– Detection threshold: how long before motion can be distinguished 

from noise? 
• ~1 ps at 1 km/s (1/128 noise threshold)

– Fringe threshold: how long to detect a complete fringe?
• ~775 ps at 1 km/s

– For good SNR, push-pull analysis can be useful
• Smoothing reduces time resolution to several sampling 

intervals
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Summary

• Push-pull analysis of multiple phase PDV measurements works on shorter 
time scales than time-frequency analysis
– Only one source can be tracked
– Intensity variations do not matter

• A lot more system characterization is needed
– Beam-block measurements
– Lissajous patterns/ellipse fitting
– Improper characterization yields velocity oscillations

• Numerical differentiation needed to determine velocity
– Signal noise is an issue

• PDV analysis introduces an arbitrary time scale to the problem
– Limiting time resolution is not the sampling interval


