
Extracting clusters from large datasets
with multiple similarity measures

Sandia Intern Symposium, Livermore, CA - August 2, 2007
Teresa Selee, North Carolina State University, Raleigh NC, Ph. D., Applied Mathematics, est. June 2008

Mentors: Tammy Kolda, Philip Kegelmeyer, Josh Griffin, Mathematics, Informatics, & Decision Sciences Department 8962
Sandia National Laboratories/CA, U. S. Department of Energy

Given a group of people, different similarities exist by which to

group them, including education, geographic location, social connections,

family connections, etc. This idea can be extended to grouping anything,

including computer files or papers in academic journals. Our project goal is to

devise a model that clusters objects using multiple similarity measures

simultaneously. The datasets of interest are too large to be treated by typical

procedures, so we have established a new method that exploits the structure of

the data to make the computations possible. In order to accomplish this, we

store object-feature matrices, each of which is used to form the slices of a

tensor. We then employ k-means clustering on compilation feature vectors

obtained from a tensor decomposition.

=

Application: clustering SIAM Journal data

Abstract:

We construct a tensor in which each slice is formed from the product of a sparse
matrix and its transpose, and gives a different similarity measure. The slices are:

The first four slices are formed from feature-document matrices for the

specified similarity. An element in the slice is nonzero if there is a similarity

between the two documents. For the fifth slice, the (i, j) element indicates the

number of papers citing both papers i and j. For the sixth slice, the (i, j) element

indicates the number of papers that both i and j cite.

Future Work : CARGIO

SIAM Journal results

CARGIO is a multi-year project whose goal is to determine project clusters
from a set of files on a computer hard drive. We are currently considering seven
different properties of the data, including names of the files, text within the files,
relationships to other files, and time between accessing files. The properties either
produce sparse matrices, or sparse matrix products that can be used in the
IMSCAND algorithm.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy’s National Nuclear Security Administration under contract DE-

AC04-94AL85000.

• Dataset: 5 years of publications from 11 journals and 1 conference proceedings
published by the Society for Industrial and Applied Mathematics (SIAM).
• Explicit links: when one paper cites another.
• Implicit links: connections between papers by author, title words, abstract
words, and keywords.

CANDECOMP/PARAFAC (CP) Tensor Decomposition

CANDECOMP (Canonical Decomposition) [4] and PARAFAC (Parallel
Factors)[5] are two different names for the same decomposition, first published in
1970, which is a higher-order analogue of the matrix Singular Value
Decomposition (SVD) or Principal Component Analysis (PCA). This method,
abbreviated as CP, gives a decomposition of a tensor into R rank-1 tensors.

Similarities between CP & IMSCAND:
• The decompositions are identical.
• The same number of iterations are required to compute them.

Differences between CP & IMSCAND:

• IMSCAND stores sparse matrices, which are implicitly multiplied by their
transpose to form the slices of the tensor. All computations are done on the
sparse matrices directly.
• CP stores fully formed slices, which can be dense.
•IMSCAND requires three new formulas for calculating a tensor times a
vector, depending on the mode of multiplication.

Bibliography

[1] B.W. Bader and T.G. Kolda, Efficient MATLAB computations with sparse and factored tensors,
Technical Report SAND2006-7592, Sandia National Laboratories, Albuquerque, NM and Livermore,
CA, 2006.
[2] B.W. Bader and T.G. Kolda, Algorithm 862: MATLAB Tensor Classes for Fast Algorithm
Prototyping, ACM Transactions on Mathematical Software, 32(4), Dec 2006.
[3] B.W. Bader and T.G. Kolda, MATLAB Tensor Toolbox Version 2.2,
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/, Jan 2007.
[4] J.D. Carroll and J.-J. Chang, Analysis of individual differences in multidimensional scaling via an
N-way generalization of “Eckart-Young” decomposition, Psychometrika, 35, 1970, pp. 283-319.
[5] R.A. Harshman, Foundations of the Parafac procedure: Models and conditions for an
“explanatory” multimodal factor analysis, UCLA Working Papers in Phonetics, 16, 1970, pp. 1-84.

For a tensor we write :

1. Compute C = X(3) (BA) (BTBATA)†

2. Compute B = X(2) (CA) (CTCATA)†

3. Compute A = X(1) (CB) (CTCBTB)†

IMSCAND (Implicit Slice Canonical Decomposition)

• In our work, the tensor has a special form: each slice is the product of a sparse
matrix (Yi) and its transpose (Yi

T).
• We don’t store full slices (which are dense), just the sparse Yi matrices.
• For example, we store these six sparse object-feature matrices:

which are used to implicitly form the full tensor whose slices are similarity
matrices.

Y1
Y2 Y3 Y4 Y5 Y6

Y1
Y1

T

We developed IMSCAND, a decomposition of these special tensors.

Iterate through steps 1-3 until convergence. The values X(1), X(2), and X(3) are
matricized tensors. Matricization of a tensor is a method for converting a tensor to
a matrix. For X(1), the 1st mode (the columns of the tensor) is mapped to the rows,
and the 2nd and 3rd modes (the rows and tubes) are mapped to the columns. The
Khatri-Rao product is denoted AB = [a1b1 a2b2    aRbR], with Kronecker
product a1b1. The Hadamard product (elementwise matrix product) is denoted
AB, and † denotes pseudo-inverse.

The IMSCAND Algorithm

 + + + . . .
a1 a2 a3

b1 b2 b3

c1 c2 c3

X1 = similarity between words in the abstract
X2 = similarity between names of authors
X3 = similarity between author-specified keywords
X4 = similarity between titles
X5 = co-citation information
X6 = co-reference information

The standard CP Alternating Least Squares (ALS) algorithm begins with a guess at
2 of the matrices, say A and B, then proceeds as follows:

The main difference in the calculations is that X(3)(BA), X(2)(CA), and
X(1)(CB) are computed differently. These matrices are all computed columnwise.
We have an NNP tensor, with each Yk having dimension NMk, The values for
X(3)(BA) are computed elementwise, so the (i, j) entry is:

For X(2)(CA) we compute the jth column as:

The computation for X(1)(CB) is identical to the computation for X(2)(CA) by
switching aj with bj. These codes are written using Matlab and the Tensor Toolbox
[1, 2, 3].

SAND2007-4897C

