

A Fast Method for Computing Principal Components Analysis on Large Data Sets

EAS 2007 Paper 420

11/14/07

Mark H. Van Benthem and Michael R. Keenan
Sandia National Laboratories, Albuquerque, NM



Overview

- PCA and eigenanalysis methods in chemometrics
- The power method and orthogonal iteration
- Performance comparisons of various methods
- Other computational considerations
- Results and Conclusions
- Summary

Motivation

- PCA is often the first step in many chemometric analysis schemes
- Data sets are growing, growing, growing!
- Chemists (and everyone else) need faster methods for analyzing their data
- Simple programming is always desirable

PCA in Chemometrics

- Given a matrix containing data, D , as a first step in many analyses we want principal components

$$D \simeq TPT$$

- Such that T and P are orthogonal basis sets, that is a reduced dimensional representation of D , with ordered maximized variance
- After computing T and P , these can be used in place of D for various other non-orthogonal factorization methods, such as MCR

Computing Principal Components

- Singular value decomposition (SVD)
 - Finds left & right singular vectors & singular values
 - Best for ill-conditioned matrices
 - Slow and memory intensive
- Nonlinear Iterative Partial Least Squares (NIPALS)
 - Finds the first singular vector of the matrix
 - Performed iteratively with matrix deflation on each step
 - Find first singular vector of each successive residual matrix
 - Fast & easy to code
- Kernel method (Eigenanalysis)
 - Orthogonal matrix factorization of a square matrix
 - Find singular vectors (loadings) of $D^T D$ (or DD^T)
 - Project data into singular vector space to obtain scores
 - Can be very fast and easy to code

Solving the Symmetric Eigenvalue Problem

- Compute the cross product $D^T D$ or DD^T
 - Rule 1: ALWAYS compute the cross product for the small side.
 - Example: For D with dimensions of 25×100 , compute the 25×25 matrix, $D^T D$
- Compute the eigenvectors of the cross product
 - Rule 2: Compute only eigenvectors you need to use
 - Example: For data in D (above) with pseudorank 5, compute only 5 eigenvectors, not all 25
- Least squares estimate of large side eigenvectors
 - For $D \approx TP^T$, then $T\Sigma T^T \approx D^T D$ and $P^T \approx T^T D$

The Power Method

- **Finds only the first eigenvector of symmetric matrix**
- **Same basic method employed by NIPALS**
- **Method used by Google's page rank algorithm**
- **Reference:**
 - Golub and Van Loan; **Matrix Computations.** 3rd ed. Johns Hopkins Univ. Press, Baltimore, 1996

$$\mathbf{t}_n = \frac{\mathbf{A}\mathbf{t}_{n-1}}{\mathbf{t}_n^T \mathbf{t}_n}$$

Algorithm:

pick a suitable starting vector \mathbf{t}_0
for $n = 1, 2, 3, \dots$

$$\mathbf{q}_n = \mathbf{A}\mathbf{t}_{n-1}$$

$$\mathbf{t}_n = \frac{\mathbf{q}_n}{\|\mathbf{q}_n\|_2}$$

end

execute until convergence

Orthogonal Iteration

- **Finds only the first r eigenvectors of symmetric matrix**
- **For $r = 1$, identical to power method**
- **Converges at rate proportional to the ratio of the r^{th} to $p+1^{th}$ (some $p > r$) eigenvalue to the n^{th} power**
- **Reference:**
 - Golub and Van Loan; **Matrix Computations.** 3rd ed. Johns Hopkins Univ. Press, Baltimore, 1996

Algorithm:

pick a suitable starting orthonormal r -column matrix \mathbf{T}_0 for $n = 1, 2, 3, \dots$

$$\mathbf{Q}_n = \mathbf{A}\mathbf{T}_{n-1}$$

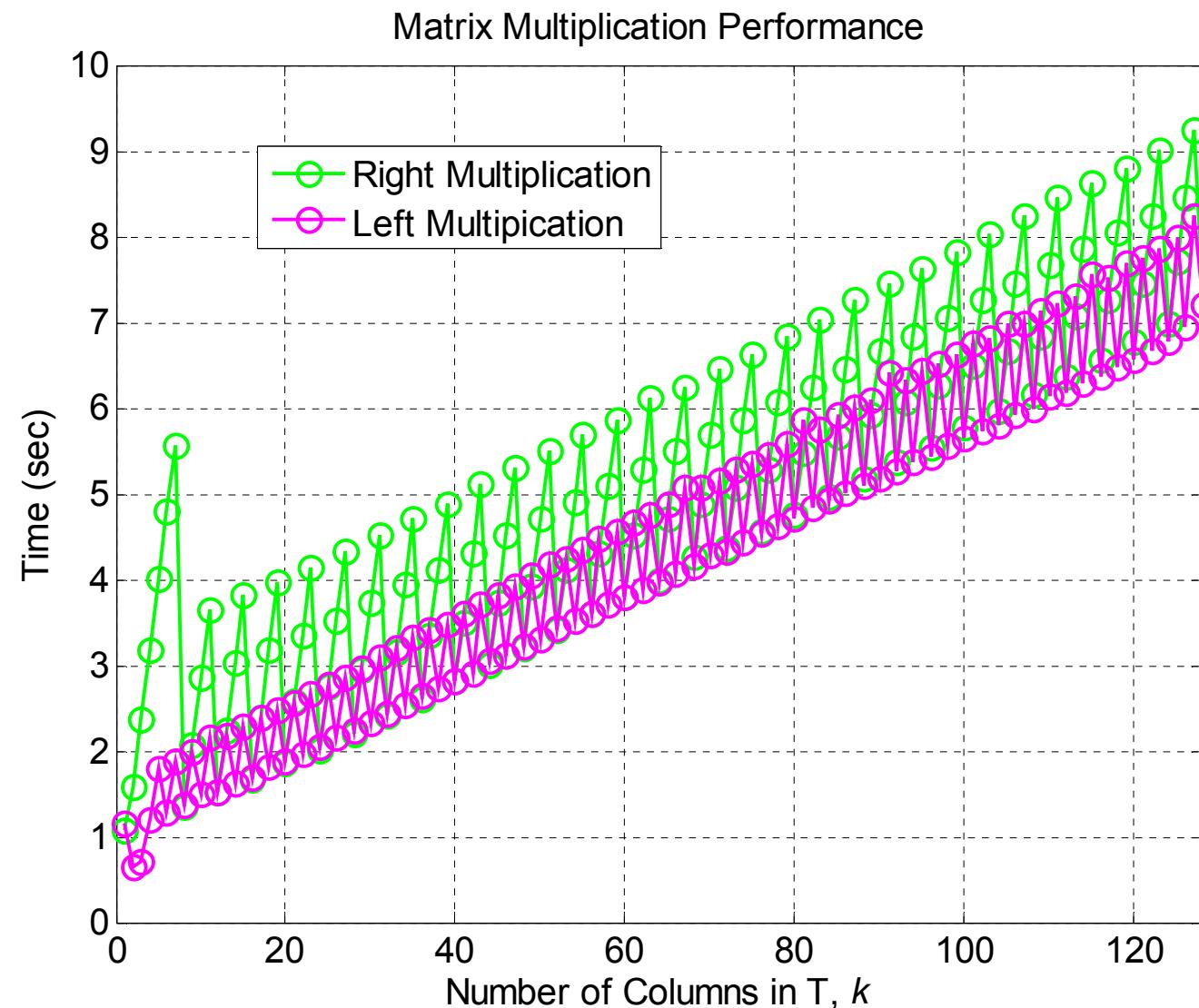
$$\mathbf{T}_n \Sigma = \mathbf{Q}_n \quad (\text{orthogonalize } \mathbf{Q}_n)$$

end

execute until convergence

- We pick radix-two factor size larger than our number of factors during iterations. $5 \rightarrow 8, 8 \rightarrow 16$ (exception to Rule 2)
- Orthogonalize with SVD.

Why Use More Factors and Radix-2?



Multiplying two matrices $A (2111^2)$ & $T (2111 \times n)$, 100 iterations.

- Green AT
- Pink $T^T A$

Due to cache memory tiling and register tiling*

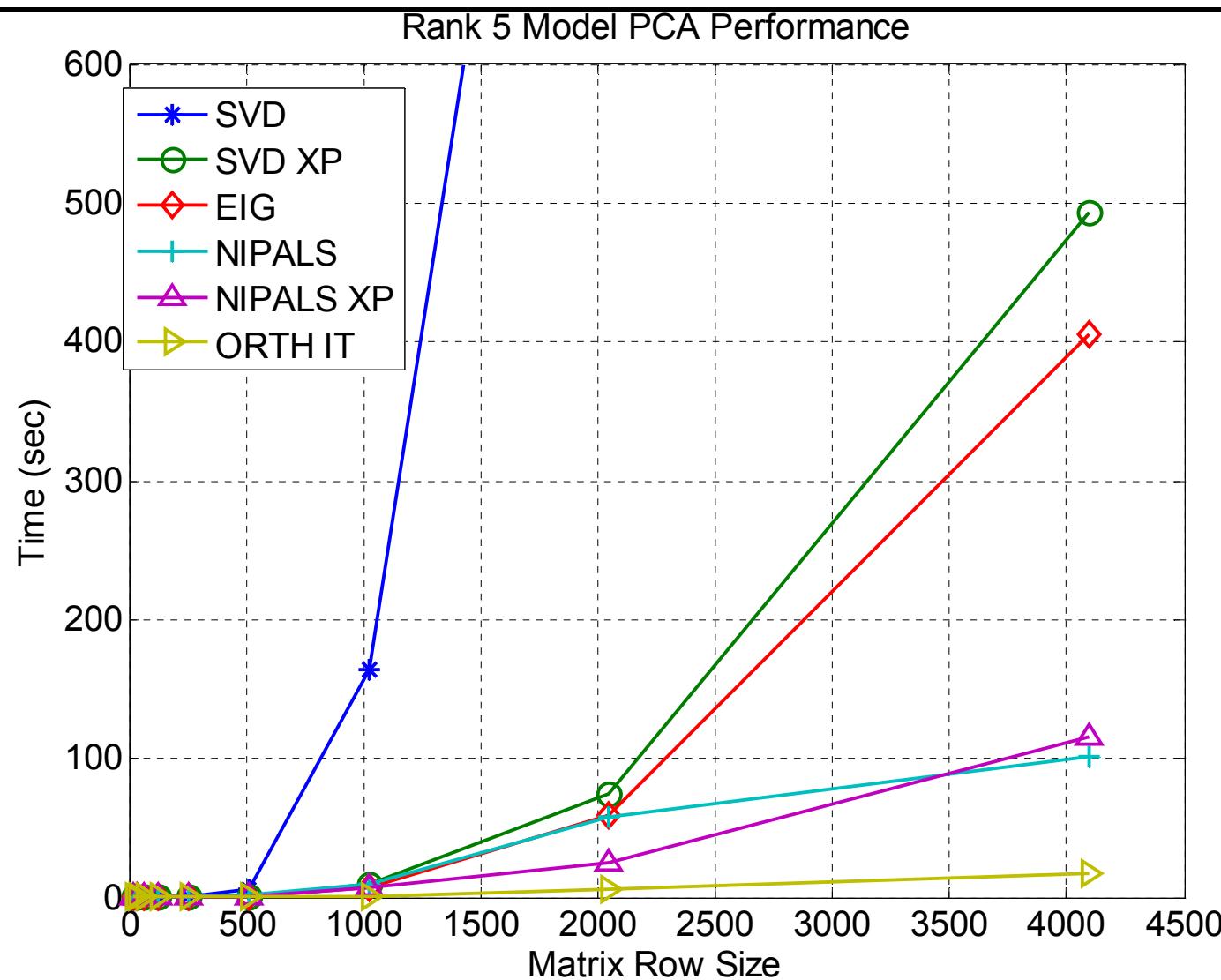
Convergence rate is proportional to $(\lambda_r / \lambda_{p+1})^k$, so having a noise eigenvalue last keeps ratio $\gg 1$

*Yotov, et al., Proc. of the IEEE; Feb. 2005; vol.93, no.2, p.358-86

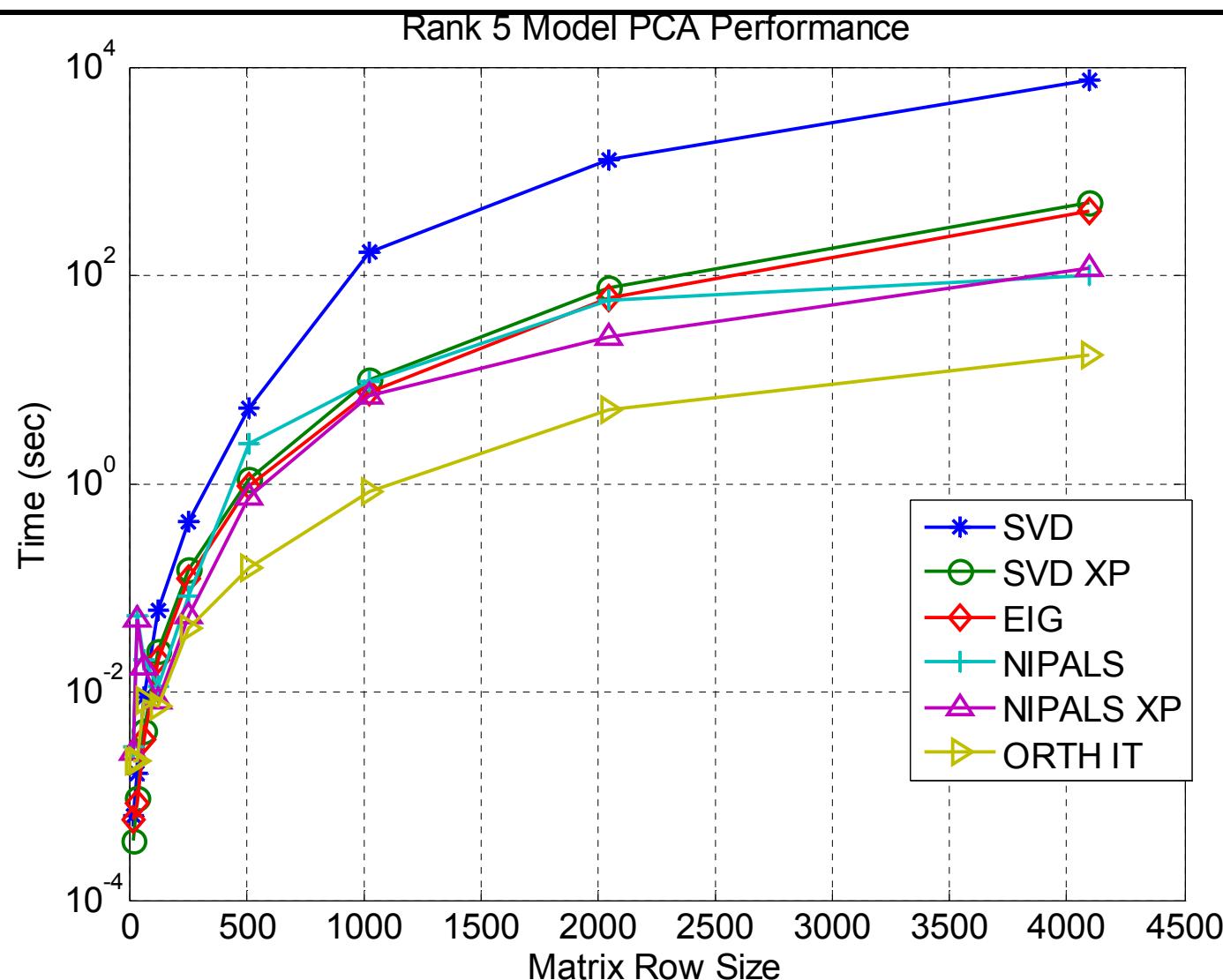
Algorithm Comparisons

- Compare MATLAB® functions SVD, EIG and our versions of NIPALS with our Orthogonal Iteration
 - Data: Simulated 5, 10 and 15 component models with Gaussian noise
 - Matrix sizes: 16×32 , 32×64 , 64×128 , 128×264 , 264×512 , 512×1024 , 1024×2048 , 2048×4096 , 4096×4096
 - NIPALS and SVD use full data set
 - Also ran both with symmetric cross-product matrices
 - EIG and Orthogonal Iteration use cross-products
 - Times to compute cross-product matrices are included in results

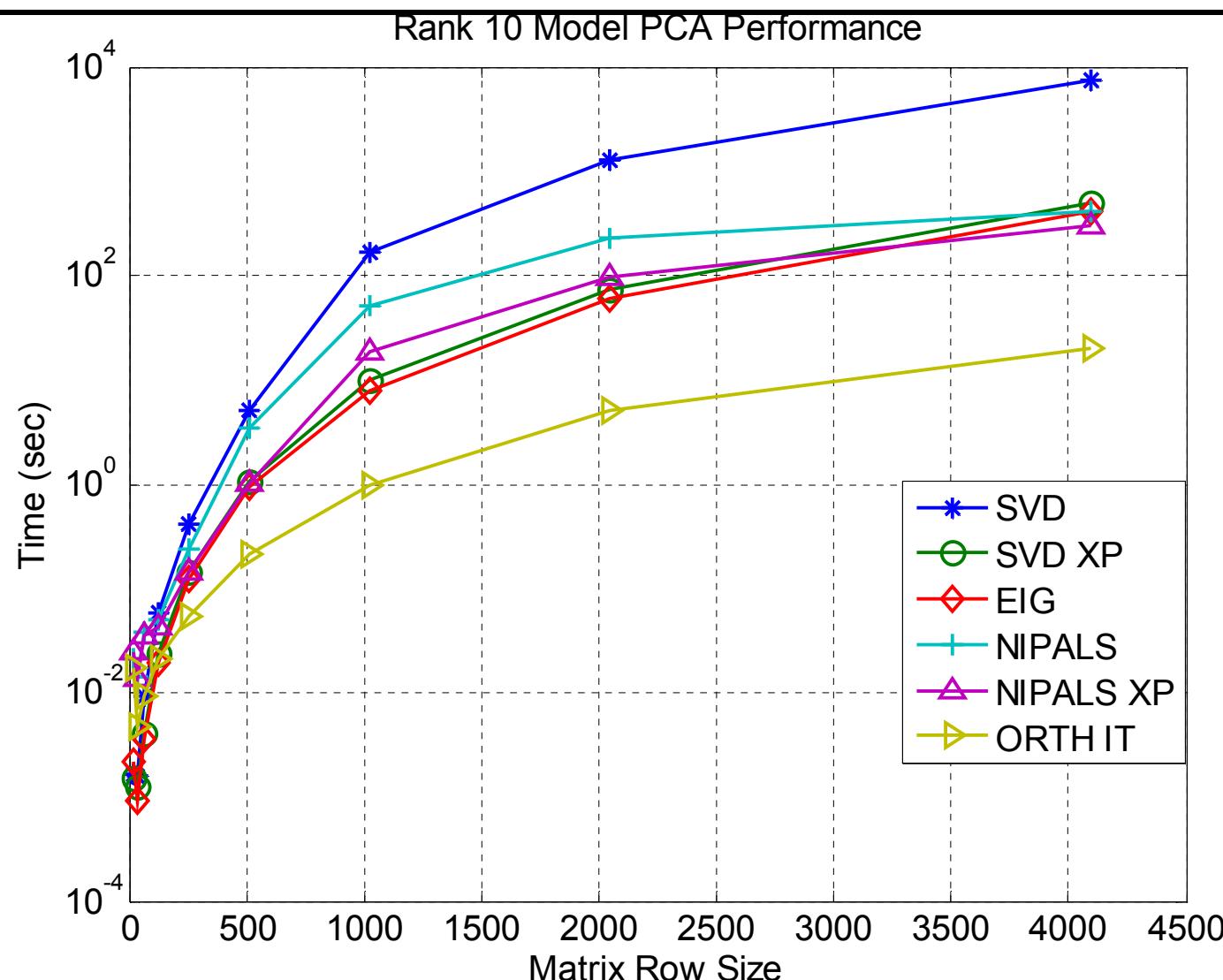
Performance of Five Factor Data



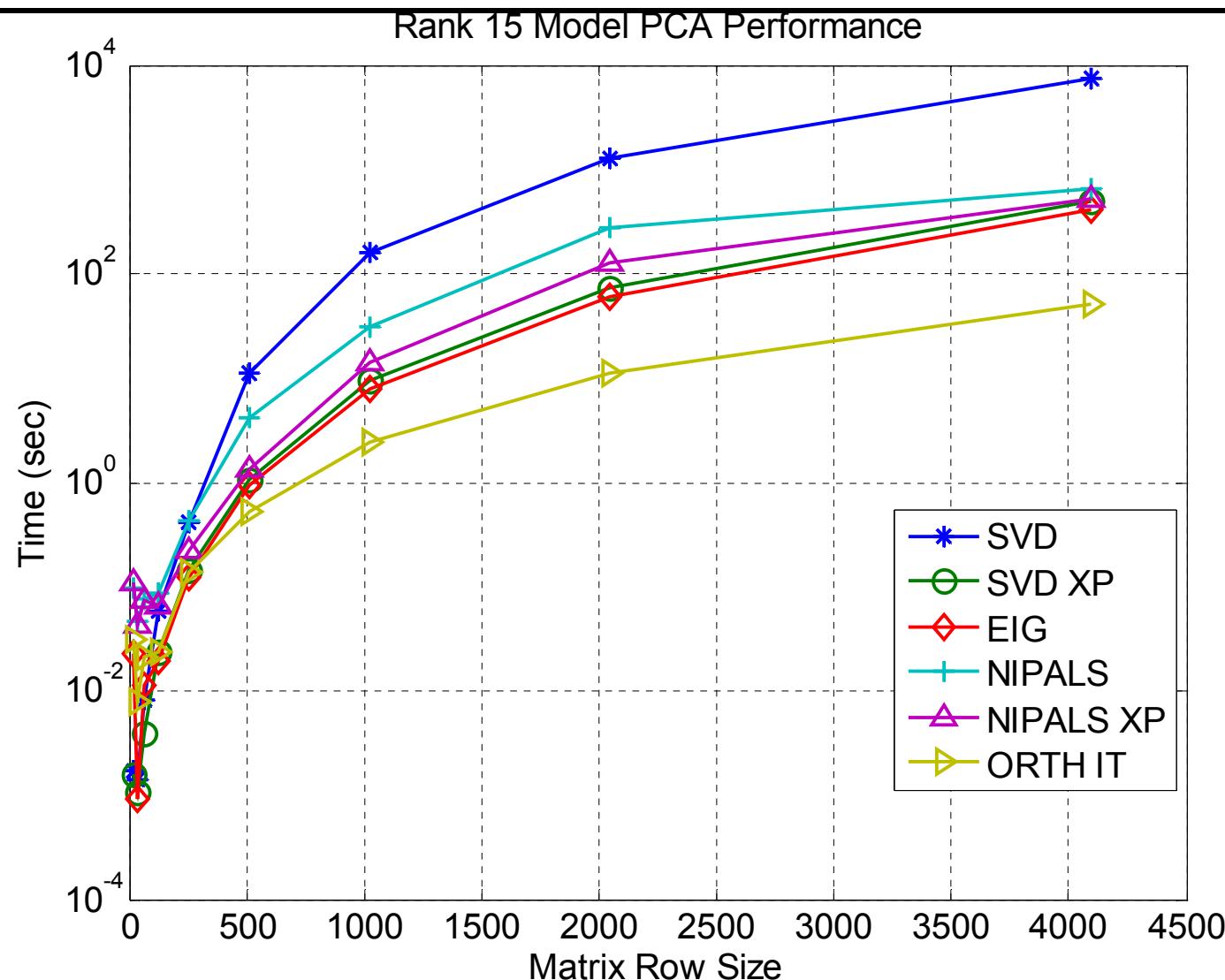
Log-scale Five Factor Data Performance

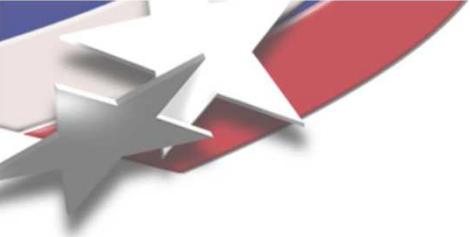


Log-scale Ten Factor Data Performance



Log-scale Fifteen Factor Data Performance





Results and Conclusions

- Orthogonal iteration is a fast, well-established method for computing a limited eigenvector basis
 - Fast and accurate PCA
- It is easy to program and implement in MATLAB®
 - Very few lines of code involved in actual algorithm
- Computational considerations should always figure into algorithm implementation
 - Matrix-matrix multiplication algorithms are highly scalable
 - They work very well on multiprocessor systems
 - Better scaling properties than matrix-vector multiplication

Summary

- **PCA and eigenanalysis methods in chemometrics**
 - Ubiquitous for initial data reduction
- **The power method and orthogonal iteration**
 - Simple iterative algorithms for decomposing symmetric matrices
- **Other computational considerations**
 - Get a rough understanding of how computations are performed before you start
- **Performance comparisons of various methods**
 - Orthogonal iteration is a clear winner!