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 PCA and eigenanalysis methods in chemometrics
 The power method and orthogonal iteration

* Performance comparisons of various methods

* Other computational considerations

* Results and Conclusions

« Summary

Overview
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Motivation

* PCA is often the first step in many chemometric
analysis schemes
- Data sets are growing, growing, growing!

* Chemists (and everyone else) need faster
methods for analyzing their data

« Simple programming is always desirable
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« Given a matrix containing data, D, as a first step
in many analyses we want principal components

D=TPT

* Such that T and P are orthogonal basis sets, that
is a reduced dimensional representation of D,
with ordered maximized variance

« After computing T and P, these can be used in
place of D for various other non-orthogonal
factorization methods, such as MCR

PCA in Chemometrics
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 Singular value decomposition (SVD)
— Finds left & right singular vectors & singular values
— Best for ill-conditioned matrices
— Slow and memory intensive

* Nonlinear Iterative Partial Least Squares (NIPALS)

— Finds the first singular vector of the matrix
« Performed iteratively with matrix deflation on each step
» Find first singular vector of each successive residual matrix

— Fast & easy to code
« Kernel method (Eigenanalysis)
— Orthogonal matrix factorization of a square matrix
— Find singular vectors (loadings) of DD (or DDT)
— Project data into singular vector space to obtain scores
— Can be very fast and easy to code

Computing Principal Components
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Solving the Symmetric Eigenvalue Problem

« Compute the cross product DD or DDT

— Rule 1: ALWAYS compute the cross product for the
small side.

— Example: For D with dimensions of 25 x 100,
compute the 25 x 25 matrix, D'D

« Compute the eigenvectors of the cross product
— Rule 2: Compute only eigenvectors you need to use

— Example: For data in D (above) with pseudorank 5,
compute only 5 eigenvectors, not all 25

- Least squares estimate of large side eigenvectors
—ForD=TPT, then TXT"=2=D™Dand PT=T'D
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The Power Method

* Finds only the first
eigenvector of symmetric
matrix

« Same basic method
employed by NIPALS

* Method used by Google’s
page rank algorithm

* Reference:
— Golub and Van Loan;

Matrix Computations. 3rd ed.

Johns Hopkins Univ. Press,
Baltimore, 1996

¢ = At
B A
Algorithm:

pick a suitable starting vector t,
forn=1, 2, 3,...

qn — Atn—l
¢ = o
qn 2
end

execute until convergence
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Orthogonal lteration

* Finds only the first r
eigenvectors of symmetric
matrix

* For r =1, identical to
power method

« Converges at rate
proportional to the ratio of
the rth to p +1%" (some p>r)
eigenvalue to the nt" power

 Reference:

— Golub and Van Loan;
Matrix Computations. 3rd ed.
Johns Hopkins Univ. Press,
Baltimore, 1996

Algorithm:
pick a suitable starting
orthonormal r-column matrix T,
forn=1, 2, 3,...
Q,=AT,,
T X=Q, (orthogonalize Q,)
end

execute until convergence

-We pick radix-two factor size larger
than our number of factors during

iterations. 5—8, 8—16 (exception to Rule 2)
-Orthogonalize with SVD. @ ekt
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Why Use More Factors and Radix-2?

Matrix Multiplication Performance
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Algorithm Comparisons

« Compare MATLAB® functions SVD, EIG and our versions
of NIPALS with our Orthogonal Iteration

— Data: Simulated 5, 10 and 15 component models with
Gaussian noise

— Matrix sizes: 16x32, 32x64, 64x128, 128x264, 264x512,
512x1024, 1024x2048, 2048x4096, 4096x4096

— NIPALS and SVD use full data set
 Also ran both with symmetric cross-product matrices

— EIG and Orthogonal Iteration use cross-products

— Times to compute cross-product matrices are included
in results
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Performance of Five Factor Data

Rank 5 Model PCA Performance
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Log-scale Five Factor Data Performance
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Log-scale Ten Factor Data Performance
Rank 10 Model PCA Performance
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Log-scale Fifteen Factor Data Performance
Rank 15 Model PCA Performance
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Results and Conclusions

* Orthogonal iteration is a fast, well-established method for
computing a limited eigenvector basis

— Fast and accurate PCA
* It is easy to program and implement in MATLAB®
— Very few lines of code involved in actual algorithm

« Computational considerations should always figure into
algorithm implementation

— Matrix-matrix multiplication algorithms are highly
scalable
 They work very well on multiprocessor systems
« Better scaling properties than matrix-vector multiplication
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 PCA and eigenanalysis methods in chemometrics
— Ubiquitous for initial data reduction
 The power method and orthogonal iteration

— Simple iterative algorithms for decomposing
symmetric matrices

* Other computational considerations

— Get a rough understanding of how computations
are performed before you start

 Performance comparisons of various methods
— Orthogonal iteration is a clear winner!

Summary
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