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Motivation

• PCA is often the first step in many chemometric 
analysis schemes

• Data sets are growing, growing, growing!
• Chemists (and everyone else) need faster 

methods for analyzing their data

• Simple programming is always desirable



PCA in Chemometrics

• Given a matrix containing data, D, as a first step 
in many analyses we want principal components

D  TPT

• Such that T and P are orthogonal basis sets, that 
is a reduced dimensional representation of D, 
with ordered maximized variance

• After computing T and P, these can be used in 
place of D for various other non-orthogonal 
factorization methods, such as MCR



Computing Principal Components

• Singular value decomposition (SVD)

– Finds left & right singular vectors & singular values

– Best for ill-conditioned matrices

– Slow and memory intensive

• Nonlinear Iterative Partial Least Squares (NIPALS)

– Finds the first singular vector of the matrix 

• Performed iteratively with matrix deflation on each step

• Find first singular vector of each successive residual matrix

– Fast & easy to code

• Kernel method (Eigenanalysis)

– Orthogonal matrix factorization of a square matrix

– Find singular vectors (loadings) of DTD (or DDT)

– Project data into singular vector space to obtain scores

– Can be very fast and easy to code



Solving the Symmetric Eigenvalue Problem

• Compute the cross product DTD or DDT

– Rule 1: ALWAYS compute the cross product for the 
small side.  

– Example: For D with dimensions of 25  100, 
compute the 25  25 matrix, DTD

• Compute the eigenvectors of the cross product

– Rule 2: Compute only eigenvectors you need to use

– Example: For data in D (above) with pseudorank 5, 
compute only 5 eigenvectors, not all 25

• Least squares estimate of large side eigenvectors

– For D  TPT, then TTT  DTD and PT  TTD 



The Power Method

• Finds only the first 
eigenvector of symmetric 
matrix

• Same basic method 
employed by NIPALS

• Method used by Google’s 
page rank algorithm

• Reference:
– Golub and  Van Loan;     

Matrix Computations. 3rd ed. 
Johns Hopkins Univ. Press, 
Baltimore, 1996
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Orthogonal Iteration

• Finds only the first r
eigenvectors of symmetric 
matrix

• For r = 1, identical to 
power method

• Converges at rate 
proportional to the ratio of 
the rth to p +1th (some p>r) 
eigenvalue to the nth power

• Reference:
– Golub and  Van Loan;     

Matrix Computations. 3rd ed. 
Johns Hopkins Univ. Press, 
Baltimore, 1996
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-We pick radix-two factor size larger 
than our number of factors during 
iterations. 58, 816 (exception to Rule 2)

-Orthogonalize with SVD.
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Why Use More Factors and Radix-2?

Multiplying two matrices  
A (21112) & T (2111n), 
100 iterations.
- Green AT
- Pink TTA
Due to cache memory 
tiling and register tiling*

Convergence rate is 
proportional to 
(r/p+1)

k, so having a 
noise eigenvalue last 
keeps ratio >> 1

*Yotov, et al., Proc. of the IEEE; 

Feb. 2005; vol.93, no.2, p.358-86



Algorithm Comparisons

• Compare MATLAB® functions SVD, EIG and our  versions 
of NIPALS with our Orthogonal Iteration

– Data: Simulated 5, 10 and 15 component models with 
Gaussian noise

– Matrix sizes: 1632, 3264, 64128, 128264, 264512, 
5121024, 10242048, 20484096, 40964096

– NIPALS and SVD use full data set

• Also ran both with symmetric cross-product matrices

– EIG and Orthogonal Iteration use cross-products

– Times to compute cross-product matrices are included 
in results



Performance of Five Factor Data
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Log-scale Five Factor Data Performance
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Log-scale Ten Factor Data Performance
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Log-scale Fifteen Factor Data Performance
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Results and Conclusions

• Orthogonal iteration is a fast, well-established method for 
computing a limited eigenvector basis

– Fast and accurate PCA 

• It is easy to program and implement in MATLAB®

– Very few lines of code involved in actual algorithm

• Computational considerations should always figure into 
algorithm implementation

– Matrix-matrix multiplication algorithms are highly 
scalable

• They work very well on multiprocessor systems

• Better scaling properties than matrix-vector multiplication



Summary

• PCA and eigenanalysis methods in chemometrics

– Ubiquitous for initial data reduction

• The power method and orthogonal iteration

– Simple iterative algorithms for decomposing 
symmetric matrices

• Other computational considerations

– Get a rough understanding of how computations 
are performed before you start

• Performance comparisons of various methods

– Orthogonal iteration is a clear winner!


