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FOREWORD @ Sandi

 The problem presented hereis areal one having a
rather full set of aspects and elements of Model
Validation that may be encountered in practice

* The attraction of this talk is the interplay exemplified
between experiments, modeling, and statistics that is
typically present in Model Validation work

 The device operation, geometry, and finite-element
thermal model cannot be presented for information
sensitivity reasons, but this does not significantly

Impede the presentation of pertinent aspects of this
problem
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* A system-level thermal model containing the device is to be subjected to
various fire accidents in arisk analysis

 From the device’s predicted temperature response in a given fire
accident, we need to assess the temperature at which the device will fail

 We cannot presently model the complex thermal/mechanical/
electrical failure mechanisms with a physics-based
first-principles model

* This drives us to a statistical model of failure, based on failure testing
and inference

« The ‘model’ to be developed and validated here is a Normal PDF model
of failure temperature -- fits the distribution of failure temperatures
reasonably

e Has uncertain parameters Mean and Standard Deviation

» Contributing uncertainties include both epistemic and aleatory
(systematic and random) types.
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The Problem: Experimental Realizations
and Operational Space of the Application
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Processing the Experimental Results @sma

» Device failure temperature is the ” that ports
information from failure characterization experiments to the
system-level analyses

* Device internal temperature (where failure mechanism exists and
failure occurs) is preferred to case temperature because the
former significantly collapses the factor dependence and
variance of failure temperature

 Thus, we must transform from measured case temperature at
failure in the experiments, to inferred internal temperature at

failure.
—a nonlinear 3D thermal FE model is involved in this transform

 In the following we account for:

— Sources of experimental error in “face-value” recorded case
temperature at failure

— Sources of FE model error in inferring internal temperature
from case temperature



Example Effect not in Face-Value results: @ﬁg't}gﬁa,_
Boundary Conditions — Heating Ramp Errors taboratories
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Example Effect not in Face-Value results: @ﬁgggﬁa,
Uncertainty of Model Discretization Error
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Bias uncertainty exists from unknown error in projected
grid-converged results using Richardson Extrapolation

— Spot Heating boundary condition

— Predicted internal temperature Richardson Extrapolation
(i.e., the inferred Failure Temperature) 290 —————————
converges as spatial discretization in the ; Time-Converged Predictions of

internal Temperature

finite-element mesh is refined ol i
- /Estimated Exact Solution

— Fine Mesh is 1.2 million linear-HEX finite
elements and took a day to run on 64
Pentium-3 processors
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Bias corrections to inferred Failure Temperatures

- These are algebraically added or superposed on the Face-Value

mean p,, .., DY Sampling for random values of the individual @ sandia

biases. Face-Value mean, [y, .| Laboratories
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Modeling Error
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-- NOT NECESSARY if an identical numerical model is used in
system thermal models run to make inferences at the system
level (then a consistent bias exists in the two modeling settings
of component-level experimental characterization
and incorporated use in system-level analysis).
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Variance Corrections to Face-Value @ﬁ%ﬁﬂ‘r‘:‘m
Results: How things “add” for VARIANCE
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» Adjustments for sources of variance in measured case failure
temperatures, propagated to variance of inferred internal Failure

Temperatures:
(Gjata _COnfldence mter\/al) O-uznit/unlt + Gzetup/ setup Ggiagnostic
2 _ 2 _ 2
Gunit/ unit Ggeometric + 02 |Iure _ (Gdata T C I ) B ( Gfetup/ setup + Gjiagnostic )
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ramp rate we cant
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Case to Internal-Temperture transformations
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O inferred Xm0 case tarmperatwres WHErE—20- = f (ramp rate, heating mode)
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due to BC ramp
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Uncertainty Aggregation Process @Sandia
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* A dual-loop Monte Carlo sampling approach is used for
aggregating the various uncers. in the expers. & FE model:

— The Bias factors are sampled and realizations are
algebraically added to py,mnig 1O g€t a point realization of

Mean Failure Temp.

— A realization from the interval (Udata +C.l.) is taken and
Inserted into the variance equation for o,uit , along with
known variance quantities from the experiments which are
used to decrement the magnitude of the conservative
estimate for o, unit.

— Many such random realizations of Failure Temperature
mean and standard deviation define corresponding normal
PDFs (realizations). Each PDF is then sampled and all
samples are binned to form an aggregate PDF (next slide).



Monte Carlo Sampling Results for
Aggregated Uncertainty
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CLOSING @sma
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 The experimental failure data was appropriately processed and
transformed into a failure criterion (model) in terms of linking
variables optimal to the intended downstream use of the
Information derived from the experiments (i.e., for use in eventual
system-level risk analyses).

 The statistical failure model faithfully replicates the failure data
over the operational space of intended use. It predicts failure as
accurately as the uncertainty in the experimental data and
transforms allow. It is therefore a validated model for the
iIntended use.

 If we had a physics-based (mechanistic thermal/mechanical/
electrical) failure model, it could certainly aspire to be as accurate
as the statistical model...but it could not be validated to be any
hmore) accurate (in view of the uncertainty limit or floor present
ere).



	Processing of Experiments and Simulations into a Validated Failure Model (for a Device)
	this
	this
	that
	that
	that
	that
	this
	that
	that
	this

