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this

• The problem presented here is a real one having a 
rather full set of aspects and elements of Model 
Validation that may be encountered in practice

• The attraction of this talk is the interplay exemplified 
between experiments, modeling, and statistics that is 
typically present in Model Validation work

• The device operation, geometry, and finite-element 
thermal model cannot be presented for information 
sensitivity reasons, but this does not significantly 
impede the presentation of pertinent aspects of this 
problem

FOREWORD



this

• A system-level thermal model containing the device is to be subjected to 
various fire accidents in a risk analysis

• From the device’s predicted temperature response in a given fire 
accident, we need to assess the temperature at which the device will fail

• We cannot presently model the complex thermal/mechanical/
electrical failure mechanisms with a physics-based
first-principles model 

• This drives us to a statistical model of failure, based on failure testing 
and inference

• The ‘model’ to be developed and validated here is a Normal PDF model 
of failure temperature -- fits the distribution of failure temperatures 
reasonably

• Has uncertain parameters Mean and Standard Deviation

• Contributing uncertainties include both epistemic and aleatory
(systematic and random) types.

Introduction



thatThe Problem: Experimental Realizations 
and Operational Space of the Application
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that

• Device failure temperature is the “linking variable” that ports 
information from failure characterization experiments to the 
system-level analyses 

• Device internal temperature (where failure mechanism exists and 
failure occurs) is preferred to case temperature because the 
former significantly collapses the factor dependence and 
variance of failure temperature

• Thus, we must transform from measured case temperature at 
failure in the experiments, to inferred internal temperature at 
failure.
–a nonlinear 3D thermal FE model is involved in this transform 

• In the following we account for:

– Sources of experimental error in “face-value” recorded case 
temperature at failure

– Sources of FE model error in inferring internal temperature 
from case temperature

Processing the Experimental Results
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Unaccounted-for Variance and Bias effects from heating 
rate approximations in modeled experiments

Example Effect not in Face-Value results: 
Boundary Conditions – Heating Ramp Errors

nominalnominal

Variance effects Systematic Bias

Surface 
failure temp.

Surface 
failure
temp.
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Discretization, Δ
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that

Bias uncertainty exists from unknown error in projected
grid-converged results using Richardson Extrapolation

Richardson Extrapolation
– Spot Heating boundary condition

– Predicted internal temperature
(i.e., the inferred Failure Temperature) 
converges as spatial discretization in the 
finite-element mesh is refined

– Fine Mesh is 1.2 million linear-HEX finite 
elements and took a day to run on 64 
Pentium-3 processors

– Fine-Mesh results still not converged, but 
more refined mesh was too expensive

– Used Richardson Extrapolation based on 
three different grid sizes

– Empirical convergence rate was 1.3 (not 
theoretically expected 2.0), so R. Extrap.  
result was somewhat suspect (uncertainty

Example Effect not in Face-Value results: 
Uncertainty of Model Discretization Error

)

internal

Pr
ed

ic
te

d 
In

te
rn

al



Face-Value mean, μNominal

Modeled 
Bias

Two Expert 
Opinions on 
potential error 
in bias model

Likelihood
Distribution 
of Projected
Modeling Error 
from Model 
Validation 
exercise

Mean Bias

Bias corrections to inferred Failure Temperatures
– These are algebraically added or superposed on the Face-Value 
mean μNominal by sampling for random values of the individual 
biases.

Confidence Interval from finite number of experiments

Thermocouple measurement bias

Average systematic bias in applied heating ramp rate
(variability of bias accounted for in ramp-rate variability)

Error in physics model of thermal transport from component 
case to internal failure location(s)

-- Comes from validation of thermal model ability to accurately
infer internal temperatures from case temperature histories

-- NOT NECESSARY if an identical numerical model is used in
system thermal models run to make inferences at the system
level (then a consistent bias exists in the two modeling settings
of component-level experimental characterization
and incorporated use in system-level analysis).

Spatial Discretization under-convergence error

estim. potential error interval about nominal correction
nominal correction by Richardson Extrapolation

Numerical simulation Time Discretezation and Solver
under-convergence error



thisVariance Corrections to Face-Value 
Results: How things “add” for VARIANCE

• Adjustments for sources of variance in measured case failure 
temperatures, propagated to variance of inferred internal Failure 
Temperatures:
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thatUncertainty Aggregation Process 

• A dual-loop Monte Carlo sampling approach is used for 
aggregating the various uncers. in the expers. & FE model:

– The Bias factors are sampled and realizations are 
algebraically added to μNomnial to get a point realization of 
Mean Failure Temp.

– A realization from the interval                      is taken and 
inserted into the variance equation for            , along with 
known variance quantities from the experiments which are 
used to decrement the magnitude of the conservative 
estimate for            .  

– Many such random realizations of Failure Temperature 
mean and standard deviation define corresponding normal 
PDFs (realizations). Each PDF is then sampled and all 
samples are binned to form an aggregate PDF (next slide).
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thatMonte Carlo Sampling Results for 
Aggregated Uncertainty
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this

• The experimental failure data was appropriately processed and 
transformed into a failure criterion (model) in terms of linking 
variables optimal to the intended downstream use of the 
information derived from the experiments (i.e., for use in eventual 
system-level risk analyses).

• The statistical failure model faithfully replicates the failure data 
over the operational space of intended use. It predicts failure as 
accurately as the uncertainty in the experimental data and 
transforms allow.  It is therefore a validated model for the 
intended use.

• If we had a physics-based (mechanistic thermal/mechanical/ 
electrical) failure model, it could certainly aspire to be as accurate 
as the statistical model…but it could not be validated to be any 
more accurate (in view of the uncertainty limit or floor present 
here).

CLOSING
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