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MOTIVATION

Y
How well do random fields capture complex solute transport through
real heterogeneous media?

Under what conditions do heavy-tailed non-Fickian dispersion arise?

What are the differences in the velocity fields?

Can the nature of dispersion be predicted from the these differences?
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y OUTLINE

Investigate these questions using high-resolution terrestrial lidar to
identify and model realistic heterogeneity at the outcrop scale.

Compare 2-D particle tracking simulations using “real” lidar based
heterogeneity to simulations using heterogeneity created using SGSIM.

Analyze differences in velocity distributions.
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LIDAR DATA

Lidar scan of sand and gravel deposit

Lidar intensity values range between 0 and 1
No relationship between intensity and K

Segmentation of intensity data into geologic
units and sand and gravel facies

Assign reasonable hydraulic conductivity values
K sand = 0.001 cm/s
K gravel = 0.01 to 0.1 cm/s

Lidar scan =70.3 by 36.4 cm (~ 2 by 1 ft)
Resolution = 0.5mm

Lidar Intensity

More information on Lidar imagery and
segmentation at the afternoon poster
session:

INVESTIGATION OF NON-FICKIAN DISPERSION
USING LIDAR IMAGERY ON OUTCROPS
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In(K), cm/s

Gary Weissmann, Jedediah Frechette, Timothy
Wawrzyniec, University of New Mexico
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2-D Particle Tracking simulations using RWHet

70.35cm by 36.4 cm domain (~2 by 1 ft)
Cell size = 0.5mm by 0.5mm (equal to resolution of Lidar data)

1407 by 7287 grid cells

Gradient = -0.014 (dh/dl = 1cm/70.35 cm)

Porosity = 0.3 (homogeneous)

Diffusion = 1*10-° cm?/s (1*10° m?/s)

No Dispersion Added

10,000 particles, flux weighted start location

Instantaneous injection

Start location = 26.5 cm line located 0.25 cm from boundary
Particle breakthrough monitored at the end of the domain

NFB

9cm

\ GHB, H

Monitoring Location

NFB

PARTICLE TRACKING SIMULATIONS

Start Location

GHB, H=10 cm
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SEGMENTED LIDAR BREAKTHROUGH CURVES

Segmented Lidar Data (Sand/Gravel)

RHWet simulations using 0.0
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SGSIM HYDRULIC CONDUCTIVITY

=24

SGSIM K fields field based on variogram analysis of the segmented
lidar K field. Two types of SGSIM fields are created:

1. Assign a single mean K

Geometric mean of lidar segmented K field = 0.0042 cm/s

2. Assign mean K according to the 5 geologic units

Geometric mean of unit 1 =0.0010 cm/s e
Geometric mean of unit 2 = 0.0013 cm/s
Geometric mean of unit 3 = 0.0036 cm/s
Geometric mean of unit 4 = 0.0036 cm/s
Geometric mean of unit 5 = 0.0096 cm/s

In both cases, a range of variance and anisotropy are applied
Variance of InNK=2,4, 6
Anisotropy =1, 5, 10, 50, 100
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VARIOGRAM MODEL

Y(IhD Direction 0
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Nested structure:

Nugget = 0.03
Structure #1: Spherical Model, Range = 0.6 cm, Sill = 0.72
Structure #2: Exponential Model, Range = 30 cm, Sill = 0.43

Individual geologic units not modeled
Anisotropy not modeled
Dip direction not modeled
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SGSIM HYDROLOGIC CONDUCTIVITY

SGSIM

SGSIM with
Geologic Units
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SGSIM BREAKTHROUGH CURVES

SGSIM fields using a single mean K

Particle tracking simulations using SGSIM K fields with range of variance
and anisotropy do not replicate heavy tailed solute transport.
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SGSIM BREAKTHROUGH CURVES

Y

SGSIM fields using mean K from geologic units

The addition of geologic units increases tailing in the breakthrough curve, however, this
tailing does not follow a power law trend, as seen in the Segmented Lidar simulation.

SGSIM with geologic units .
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SGSIM BREAKTHROUGH CURVES

How is the difference in solute tailing related to the velocity field?

The following analysis focus on the three particle tracking simulations

below:

Segmented Lidar = Black
SGSIM = Blue
SGSIM with geologic units = Red

SGSIM K fields have a variance
of 4 and anisotropy of 50

% of particles remaining at 200 hours

Segmented Lidar = 6.72%
SGSIM = 0.03%
SGSIM with geologic units = 1.24%
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}.‘ STREAMLINES
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VELOCITY CALCULATION

Grid based velocity
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VELOCITY ANALYSIS
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1. Calculate distribution in velocity increments using the following 3

velocity fields:
Segmented Lidar
SGSIM (variance = 4, anisotropy = 50)
SGSIM with geologic units (variance = 4, anisotropy = 50)

Increment data in the X and Y direction, adjacent grid cells
Increment data are used to eliminate non-stationary effects within the velocity field

2. Compare Velocity distributions to Laplace and a-stable distributions

Laplace a-stable
PDF(x) = exp(-cxb) PDF(x) calculated using
stable software (John Nolan)
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Red = SGSIM with Geologic Units
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VELOCITY ANALYSIS Black = Segmented Lidar

Red = SGSIM with Geologic Units
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CONCLUSIONS

:p'

SGSIM fields, even with high anisotropy and long range correlation, do not replicate
solute tailing as simulated through realistic heterogeneity based on the lidar scan.
Lidar segmented K field results in a breakthrough curve with a truncated power law tail,
slope = 1.65.
Adding geologic units to the SGSIM K field increases tailing, but does not propagate a
power law tail.

SGSIM velocity increment distributions approximate velocity increment distributions

from the segmented Lidar heterogeneity.
Stretched Laplace distribution, 3 values range between 0.3 and 0.4
Velocity increment distributions alone are not a good indicator of heavy tailed solute transport.

What characteristics of the lidar segmented K and V field leads to power law tailing?

Lidar K field has sharp contact between sand and gravel.
Steady state velocity increments (grid based) # velocities of particles (streamline based).

Sandia
m National
Laboratories




' FUTURE RESEARCH

Using additional Lidar scans, extract geologic units and facies information from

intensity data using segmentation methods.
Refinement of segmentation methods to best classify outcrop heterogeneity.

Laboratory scale sand pack experiment based on lidar image. Visualize solute
transport through outcrop scale heterogeneity.

How do sharp contacts influence the dispersion of particles?

Would PluriGaussian simulation better replicate sharp contacts and therefore better replicate
solute transport through real heterogeneous media?

PluriGaussian simulation combines multiple Gaussian fields and a phase diagram to create a
facies map.
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