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Electrochemical model options oot

e Purely empirical correlations—Ilack predictivity

e Highly simplified physics models—narrow predictivity
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e Approaches based on fundamental conservation equations:
e Simplification to analytical solutions.
* Most educational.
* Only address a fraction of the relevant issues.
» Lack generality. Not scalable.
e Numerical solutions with general properties.
* Scalable. Arbitrary complexity.
* Harder to build the general capability.

» Best to identify properties in simpler environments.
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Electrochemical models implemented within Aria kI

* |mplementation in Aria allows 2D/3D, multiphysics
capabilities, parallel implementation

= Within Aria, the electrode is discretized
= Conservation equations are discretized so some losses determined
from finite element solution.
= QOther losses are ‘subgrid’ so that they are computed using Electrode
object reaction source terms.

. . . . i_lig_x
= Variable temperature simulations possible ) 8300100
2.153e+03E

= Temperature table 1.475¢+03
7.978e+02

" |nclude energy equation (more work needed for source terms)  1.204e+02
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Electrode subgrid models e s

= Many electrode active material
particles might exist in an Aria control
volume.

= Active material (electrode)-electrolyte
interface represented by subgrid
Electrode model.

Within electrode particles, multiple phases
exist.

= Shrinking core model.
Interphase reaction rates.
Solid-state diffusion.
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Electrode model built on top of Cantera oo

e Active electrochemical material models built on top of Cantera.
e Cantera: open source framework for thermodynamics, transport, kinetics, etc.
e Modularity allows specification of separate physics of each region.

e Common interfaces: Exchange physics models to predict new
material/configuration types.

Volume

Cathode

Interface
Collector
Interface
Interface
Interface
Collector

Common interfaces

{ Transport J
Plug and Play models




A design consideration: Identifying potential losses () g
limiting mission performance
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= Electrochemical performance is
based on

= Thermodynamic potential.

= Potential losses (function of
current). Separator

* Ohmic losses (solid & electrolyte).
= Diffusive losses (solid & electrolyte).

= Reaction overpotential losses.

Isothermal Periodic Pulse Discharge at 450 C

= QObjective is prediction of
potential as a function of load
and depth of discharge.




Thermodynamics: LiSi

Reaction

= Single species phases
Si+ Li(lig) > Li Si
Li, Si + Li(liq)— Li.Si,
Li Si, + Li(liq) — Li Si,

= Free energies determined
algebraically using voltage

Discharge Regimes
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Li, FeS, Thermodynamic Models s

Four plateaus

FeS, ——Li,Fe,S, &——=11,, Fe, S, +Fe, S—=1Li,FeS, &——=Li1,S+Fe
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Multi-plateau model has
‘correct’ thermodynamic
treatment

=  Margules model for solutions:
Li,, ,Fe, S, and Fe,,S
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Newman Model: linear
voltage fit over four regions

= (No REAL thermodynamic
phases)
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Interphase kinetics .

= Arrhenius rate coefficients

= Exchange current density formulation
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Electrolyte transport e s

= Stefan-Maxwell transport for molten LiKCl salts: x vy —TZRTZ
=  Margules treatment of salt thermodynamics.

= Stefan-Maxwell interaction parameters
1 2l-ex, J(1+eX,,) 2C,F?

determined from _ Lici Kai
D D K RT

Li'K"
1 26X (l-eX, C1) 2C, F?
D KRT

= Salt conductivity:/ .
= Self diffusivity, D.

28X

= |nternal cation mobilities, €. (
LiCl

1+8XKCI)+2CTF2
D K RT
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Solid-phase conduction .

= Metal conductionin
anode is probably fast
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Cathode conductivities
are on par with
electrolyte (1-2 S/cm).

= Likely measurable effect on
potential drop.
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= \Variable, composition-
dependent conductivities
not yet implemented.
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Electrode models Notonal

= |nfinite capacity:
= No change in electrode composition with discharge.
= Ohmic and initial overpotential losses plus electrolyte concentration
overpotential losses.

= Multi-plateau:
= Each plateau has finite capacity.
= Multiple plateaus can react simultaneously.
= Reacting surface area assumed to vary with internal surface area.
= Solid state diffusion not currently accessible through GUI.

* Newman Reaction Extent (FeS, cathode only)
= Voltage fit based on Bernardi and Newman evaluation of Argonne
data. Not ‘real’ thermodynamics.
= Solid state diffusion models implemented.
" More robust than multi-plateau for FeS, cat
= Finite capacity
= Like multi-plateau but with only first phase change per electrode.
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Demonstration case Laboratories

Isothermal (500 C),
constant current single-
cell measurements.

Multiplateau anode and
Newman reaction extent
cathode models.

Looking here at base load and two
high loads. T

200 300 200
cap [mAhr/g FeS2]

Measurements: dashed line
Predictions: solid line Inner surface rate limiting on cathode
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Demonstration case Laboratories

Isothermal (500 C),
constant current single-
cell measurements.

Multiplateau anode and
Newman reaction extent
cathode models.

Looking here at base load and two
high loads L

00 200 300 200
cap [mAhr/g FeS2]

L | I
500

Measurements: dashed line
Predictions: solid line Outer surface rate limiting on cathode
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Calibrating interphase reaction rates and solid state™ "
diffusion coefficients

Interphase reaction rates and solid state diffusion coefficients
are basically unknown.

Use least squares calibration to get best fit, but there is long
curved valley in state space that gives similar fits.

3

2.5F

normalized overpotential

residual squared [VZ]

-9
logiD) fraction particle reacted
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Predictions with self-discharge e

Self discharge is known
to occur at elevated
temperatures.

Self discharge simulated
by converting reactive
materials to products.

Dashed lines: measurements.
Solid lines: no self discharge.

Dash-dot: mimic self discharge
(0.5 mole e per FeS,).

100
cap [mAhr/g FeS2]

Outer surface rate limiting on cathode




Quantifying prediction uncertainty through S
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para meter uncertainties

Uncertain parameter values lead to prediction uncertainties.
Quantify uncertainties by Latin-hypercube sampling.
Correlation coefficients parameters and predictions

Side reaction Cathode Cathode
(e loss) particle conductivity
diameter

% x"x >3f"‘x "”"5*;
Low load | -0.46 -0.84 0.11 _ Rk 1

% high load
Q  low load

cell potential

E

High load 0.49 | S

™ E

¥ high load
©  low load

high load
low load

cell potential

cell potential

self discharae
cathode conductivity
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Simulations by Adrian Kopacz, Sandia National Laboratories




Simulations by

Adrian Kopacz,
Sandia National
Laboratories
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= Electrochemical model formulated from basic conservation
equations.
Numerical approach allows incorporation of additional physics.

Numerous chemistry/physics sub-models usually validated in simpler
configurations.

Simulations provide insight into hard-to-observe phenomena.

= Thermodynamic potential, transport and kinetic potential
losses integrated to give predictions for LiSi/LiKCl/FeS,
system.

Predictions reasonable except for difficulties matching
diffusive losses simultaneous with self-discharge losses.

= Some issues remain with possible added physics (self
discharge, robust multi-plateau cathode, better treatment of
diffusion, heat source terms)
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Thank you

Questions?
jchewso@sandia.gov
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