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Abstract

Use of stealth rootkit techniques to hide long-lived malis pro-
cesses is a current and alarming security issue. In this pape
we describe, implement, and evaluate a novel VMM-basechidd
process detection and identification service called Lytdisat is
based on the cross-view validation principle. Like pregid{MM-
based security services, Lycosid benefits from its pradelctea-
tion. In contrast to previous VMM-based hidden processalets,
Lycosid obtains guest process information implicitly. rdsiim-
plicit information reduces its susceptibility to guest sea attacks
and decouples it from specific guest operating system versiod
patch levels. The implicitinformation Lycosid dependshanyever,
can be noisy and unreliable. Statistical inference techegjlike
hypothesis testing and linear regression allow Lycosidddé time
for accuracy. Despite low quality inputs, Lycosid providesbust,
highly accurate service usable even in security enviroriswhere
the consequences for wrong decisions can be high.

1. Introduction

Stealth rootkits that can hide processes are an importauotige
issue. According to statistics gathered from Microsdftialicious
Software Removal To§20], a significant fraction of the malware
it encounters consists of stealth rootkits [22]. The apilit detect
and respond to malicious hidden processes is a clear adyaita
the race to defend network-attached computers.

The technique works by observing a class of objeetg,(OS pro-
cesses) from multiple perspectives and noting inconsiggsrbe-
tween views. One view, known as the untrusted view, is obthin
from a high-level in the system. The other, known as the &aist
view, is obtained from a low level that is unlikely to have besib-
verted by an attacker. If an object appears in the trusted gied
does not appear in the untrusted view, the cross-view gi@cion-
cludes that an object has been hidden. In this paper we falew
cross-view convention and use “trusted” to mean “more bédia
rather than “having formal security properties”. The deepithin

a system a trusted view can be obtained the better. Lycos$#insb
its trusted view from deep within the system at the VMM-layer

A VMM is an attractive place to deploy security monitoring
services like anomaly detection systems [10, 13, 17]. Byugiof
their location behind the relative security of the virtuahchine
interface, VMM-based services are better shielded fromniaicals
attacks that originate from within a guest virtual machib@][ even
if the guest operating system kernel is compromised. Thaugh
VMM is separated from guests by a secure barrier, it stillleasly
access to the raw state of its guest virtual machines. Fonpbea
a VMM can easily read and write guest registers and memory and
can observe guest I/O like disk and network requests.

While implicitly obtained information has the beneficiabpr
erties described above, it can be challenging to use efédgtiFor
example, it can be noisy and is sometimes incorrect [15, L46].
cosid achieves accuracy by using statistical inferenchnigaes

In this paper we propose a VMM-based hidden process detec- like hypothesis testing and linear regression that trade tfor

tion and identification service called Lycosid. Previoustgposed

accuracy. Despite low quality inputs, Lycosid provides bust,

VMM-based security services assume that the VMM has dettaile highly accurate, and portable service usable even in dgaemii-
implementatiorinformation about the guest operating systems they ronments where the consequences for wrong decisions céghoe h

protect [10, 17]. In contrast, Lycosid is based on informatim-
plicitly obtained about guest operating systems. Becdukees not
depend on specific guest OS implementation details, Lydoasd
two key advantages over previous approaches. First, it ie me®
silient to typical process hiding techniques, even thoaertanip-
ulate and corrupt the privileged internal state of the O%é&kiSec-
ond, a single implementation within a VMM can be portableoasr
very different operating systems like Windows and Linuxaetfve
demonstrate in Section 7.

Like earlier approaches, Lycosid uses a technique caliess-

view validation [30] to detect maliciously hidden OS processes.
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Lycosid bases all of its detection and most of its identifica-
tion decisions orpassivelyobtained information. In some cases,
however, we find that passive information is inadequate ltaly
identify which of many candidate processes has been hidgen.
cosid introduces a new technique calleBU inflationthat allows
a VMM to influence the runtime of specific processes by cakeful
patching a process’s executable code. Using CPU inflatign, L
cosid can often transform a detectable, but unidentifidiiden
process into a hidden process that can be reliably identified

The rest of this paper is organized as follows. We first review
process hiding techniques in Section 2. In Sections 3 anddisve
cuss the techniques used by Lycosid to detect and identityemi
processes. Section 5 discusses the evasion problem. Webeesc
our implementation of Lycosid in Section 6 and Section 7 aors
a detailed evaluation of the accuracy and performance ointhe
plementation. We discuss related work in Section 8 and colec!
in Section 9.



2. Process Hiding

When a system is compromised, it is common for an attacker to
leave programs behind that advance the attacker’s goals.aph
proach is especially favored when the attacker accesseglaima
from a remote location over a network. For example, an aglack
will often leave behind a back door program that listens tortht-
work and allows the attacker to regain a privileged presenca
compromised system without re-exploiting a vulnerabil2Y]. In
other cases, key capture or file system scanning progranisfare
running to collect additional useful information like leghames,
passwords, and financial records.

The presence of unexplained processes, network connggtion
or files is an indicator to a system administrator or intragietec-
tion system that a successful attack has occurred. To aipgibhg
off a defender, an attacker will often attempt to hide thealim
cious processes, network connections or data files [2].ridid
typically accomplished by modifying some aspect of the eayst
using a suite of tools called a stealth rootkit. For examptame
rootkits modify program binaries likps, net st at , andl s [21].
Other rootkits hook into the call path between a user apiitina
and the kernel by modifying libraries, dynamic linker stuwes,
system call tables, or operating system functions thatrtegystem
status [12]. Finally, some rootkits manipulate kernel datactures
using so-called direct kernel object manipulation (DKOM]J. [
Rootkit hooks and modified kernel data structures lead taupbed
results of user requests, effectively hiding the presehogaticious
resources [3, 28]. The list of techniques available to hydgesn re-
sources is growing.

Long lived malicious processes are the most likely candilat
for hiding. The probability of detecting a short lived métics
process via a process introspection tool jgeeis relatively small,
S0 an attacker rarely goes to the trouble of hiding a sheedli
process. The long-lived nature of maliciously hidden psses has
implications for the kinds of detection techniques thatfagesible.

3. Detection

The Lycosid service is partitioned into detection and idation
components. We discuss the detection component in thigsect
Detection consists of determining if any processes runmiitin

a guest virtual machine have been hidden. The detectiomiddgo
does not identify which processes are hidden. Identifioasalis-
cussed in Section 4.

3.1 Approach

If a process has been hidden using any of the methods describe
in Section 2, it will not appear on a user-level processriggtilt
will, however, appear on a suitably obtained, low-levelgass list.

cess count obtained from within the VMM and a process count ob
tained from within the guest. Using a hypothesis test, wededer-
mine if the two process lists differ in length even when thstegn
process state is in dramatic flux. The test procedure alsdde®
the ability to quantitatively limit the chance that we assere or
more processes are hidden when in fact no hiding is takingepla
i.e, the false positive rate can be explicitly controlled.

Formally, letT" be the length of the trusted process list andiet
be the length of the untrusted process list. Our null andradtére
hypotheses are then:

Ho:T—-U<0 1)
Hi:T—-U>0 @

We use the non-parametric Wilcoxon rank-sign statistig [@5
our tests because it makes no assumptions about the ditnitmd
the population from which our samples are drawn. Data aislys
indicates that the distribution af — U is quite symmetric, but can
be slightly skewed and is not normally distributed.

If we can reject the null hypothesi, in favor of the alterna-
tive hypothesisH; at an appropriate level of confidence, we can
guantitatively conclude that one or more processes is deddgen.
The hypothesis test p-value indicates the probability @fisef pos-
itive, i.e,, indicating hiding when the null hypothest$, (no pro-
cesses are hidden) is true. As with most anomaly detectstB)s,
the consequences for false positives in the detection peeft by
Lycosid are significant. Too many false positives degradico
dence in the system and render the information it provides le
valuable. Hence, we choose a conservative threshold cowcfde
value @ = 2 x 107°). If the one-sided p-value computed dur-
ing the hypothesis test falls below, Lycosid reports that one or
more processes have been hidden.

In addition to a hidden process indicator, the average rdiffee
observed between the two lists during the detection phasédas
an estimate of the number of processes that have been hitldisn.
point estimate is used as input to the hidden proddsstification
algorithm described in Section 4.

3.2 Details

Lycosid obtains a trusted view of guest processes from withi
VMM. The VMM-based approach has advantages over any tech-
nique that obtains trusted information from within the guéeself
because a VMM is typically much harder to subvert than guefst s
ware services or even the guest operating system kerned.fatt
follows from the relatively smaller and well-defined virtuaa-
chine interface that separates the guest from the VMM.

VMI [10], for example, uses this advantage to provide vasiou
resilient security services within a VMM, one of which is t&h

Hence, to detect a hidden process we can compare the lerfgths oprocess detection. Lycosid differs from VMI in the way it alits

process lists obtained at a low (trusted) and a high (urdd)dével.
If the trusted list is longer than the untrusted list we canataede
that at least one process has been hidden.

On an idle system, simply obtaining a single instance ofwfe t
process lists and comparing them would suffice to detectemdd
processes. On an active system, however, where procesdesiiag
created and destroyed, the situation becomes more corgalica
For example, Lycosid cannot perfectly synchronize the sirae
which it makes its two process list observations, so they may
reflect different process-related states of the systemitidelly,
the measurements taken within the VMM can be delayed, furthe
complicating the inference. As the system experienceshighels
of process creation and exit activity, the problem worsens.

The Lycosid detection phase overcomes these issues byobtai
ing many pairs of measurements over time and performingiaser
of paired-sample hypothesis tests [25]. Each pair consfsagro-

trusted information about the guest operating system. \ilats
detailed information about the location and semantics ofape
Linux kernel data structures to obtain a low-level guestcpss
list. In contrast, Lycosid obtains its low-level guest infation
implicitly. This is a key advantage of Lycosid. No detailedpie-
mentation information about the guest is required. As altesy+
cosid can be deployed without taking versions and patcHdefe
the target operating systems into account. Our single imetea-
tion of Lycosid within a VMM, for example, can support mulép
versions of both Windows and Linux without modification.
Lycosid uses Antfarm [15] to obtain its trusted view of guest
operating system processes. Antfarm is a VMM component that
implicitly obtains information about guest operating gystevents
like process creations and exits by observing closelyedlatvents
like virtual address space creation and destruction. Amtfaan
also provide estimates of other process-related quamtikie CPU



time consumed, working set size, and context switch coupts b
observing their virtual address space analogues.

Lycosid obtains its untrusted view of guest operating syste
processes the same way that VMI does. A network connection

is made from the VMM to the guest and a user-level program .

within the guest is invoked to enumerate processes. On a UNIX
like system theps command can provide this information. On
Windows systems, various utilities likesl i st . exe [4] or the
built-in t askl i st. exe can be used.

Lycosid obtains trusted and untrusted process lists at stior
dom intervals. A window of the most recent samples is preskry
for use in hypothesis testing. The size of the window andainggde
interval are configurable. In our implementation, samples -
tained every one second on average. Up to the most recent600 s
ples are used in each hypothesis test. Approximately everytm
we test the null hypothesis that the two lists are the samgthen
Given the detection threshold = 2 x 10~°, our configuration
corresponds to about one expected false positive per year.

4. ldentification

After detecting that one or more processes have been hidaen,
natural next step is tadentify which processes have been hid-
den. Identifying specific hidden processes enables a mtwetiet
VMM response to the malicious activity.

Given only the information provided by the hiding detector,
each process visible from within the VMM is equally likely be
the culprit. Our approach for identifying which processagédbeen
hidden is to select a measurable quantity associated wdidhehi
processes and use it to choose from the set of candidatesgexce

4.1 Approach

As a process executes, it consumes CPU time. Both the apgrati
system and a process-aware VMM like Lycosid can account CPU
time to specific processes. L&% denote the CPU time for process

i as observed from within a guest. )ét be the CPU time accumu-
lated by procesg as seen by the VMM. Then, when hiding occurs,
the quantity

H = Z Vi — Z G (3)

J 1
represents the total CPU time observed within the VMM thabis
accounted for by processes visible to the guiest,it is the CPU
time used by hidden processes. We can construct a lineatieqgua
using H and the per-process CPU times we have obtained from
within the VMM.

H=7Vi+BVot ...+ BuVn (4)

Equation 4 holds if the coefficients; take the valud for pro-
cesses that are hidden afdfor non-hidden processes. We can
identify likely hidden processes by fitting a multiple vdoie linear
model using least-squares regression on Equation 4 andsicigpo
the N variables from the model that best explain the variance ob-
served inH, whereN is the estimated number of hidden processes
obtained during the detection phase. Hence, we treat higden
cess identification as a multiple linear regression vaeiaelection
problem.

There is no universal, automated technique available far va
able selection in multiple regression that is guaranteesttect the
best set of variables to include in a model. Stepwise praesdu
attempt to refine an over-specified or under-specified maeel i
atively, but often choose bad models. All-possible-subsegres-
sion is guaranteed to choose the best model as long as theenumb
of variables to include is known in advance. As the name iespli

# VMM PI D VMM proc runtine (s)
0x3a40 1.219

Oxad3f 0. 203

0xf 003 0.491

# Guest PID Cuest proc runtine (s)
30 1.103

495 0. 422

933 0.001

Figure 1. Sample Identification Data. The figure shows a notional data
set used to identify hidden processes. There is no comeldigtween VMM
and guest process IDs.

all-possible-subsets does this by trying all possiblealde com-
binations of the specified size and maximizing a provided ehod
statistic like the multipleR?> measure. Unfortunately the cost of
all-possible-subsets variable selection grows ﬁge) whereN is
the total number of processes ahds our estimate of the number
of hidden processes. Since the number of processes to cfionse
is often large in our environment, this technique is usutdlytoo
expensive.

Lycosid uses a simple variable selection heuristic thatripo-
rates what we know about the form of the true model. We know
that the coefficients of the variables representing hiddengsses
should be close t@.0 and we have an estimate for the total num-
ber of hidden processes. Once an initial model incorpogyasith
processes has been fit, those variables corresponding cegzes
that are obviously not related to the extra observed CPU time
are removed from the model. Specifically, variables withatisg
estimated slopes and variables whose estimated slopesuefe m
greater thanl.0 (e.g., greater tha®h in our implementation) are
removed. A new model is then fit using only the remaining vari-
ables. Finally, theV variables whose positive relationship to the
extra CPU time is strongest are chosen. The strength of ablais
relationship to the extra CPU time is represented by thelpeva
that results from testing the null hypothesis that the \#e'a es-
timated coefficient is zero. Note that we do not attempt terint
pret the resulting p-value as a probability related to oenidfica-
tion task. The p-value is simply used to order the variabteoal-
ing to the strength of their relationship to the extra obsdrCPU
time. The topN variables from the ordered list are selected. As
in the detection case, we employ a conservative threshotlys
(o = 1 x 107°) to reduce the chance of false positives,, of
incorrectly identifying a process as hidden when it is nbtweé
do not find N variables with sufficiently small p-values, additional
samples are taken and the procedure continues until a ccalfigu
upper limit of samples is reached.

4.2 Details

Lycosid obtains CPU time information about processes from b
the VMM and from the guest operating system. CPU times for
VMM-visible processes are obtained using Antfarm. As in the
detection phase, Lycosid invokes documented APIs to olataih
return per-process CPU time information from within the gjLie

Samples are obtained from the VMM and from the guest operat-
ing system at small random intervals. In our prototype, damare
obtained about once per second on average. A sample coofsists
set of process identifiers and the CPU time used by each agsaci
process since the last measurement interval.

Figure 1 shows a notional data set used for identification pur
poses. Note that Lycosid is unaware of the mapping from guest
process IDs to the abstract internal process IDs availaftfeirw
the VMM. No simple method of inferring this mapping currgntl



exists. Otherwise identification would consist of a simpée sub-
traction operation.
Over time, samples are collected and stored. Once adequat

samples have been obtained, a model can be fit and evaluated fo

hidden process identification. In our current implementgtian
initial model is fit oncemax (40, nunber of processes)

samples has been obtained. Up to a maximum of 1000 samples ar

obtained for use in identification.

4.3 CPU Inflation

The key feature used by our identification algorithm is thdJCP
time consumed by each process as observed from within the VMM
and from within the guest operating system. It is importamate
that the identification technique, unlike the detectiorhiegue,
requires that the hidden process actually riysosidcan detect,
but not identify a completely idle hidden process.

Lycosid uses a new technique, call@BU inflation that allows
it to influence the CPU time used by a process. It is an inteusiv
technique used only when the passive methods already bedcri
fail to reliably identify a hidden process. CPU inflation Wwerby
transparently placing patches in guest program code. Bgirfor
processes to run more frequently and more aggressivelythen
normally would, CPU inflation effectively increases thealesg
power of Lycosid’s identification techniques.

4.3.1 Details

When control is about to return from the VMM to a guest and
CPU inflation is enabled, Lycosid determines the addressavhe
execution will resume and places a small patch containirigh t
loop at that location. The patch forces the associated psote
fully utilize its scheduling quantum until it is removedfestively
maximizing the amount of CPU time used by a process.

Patches are only placed when control returns to user-maode. |
our VMM environment, nearly all VMM-to-guest transitions-r
turn to kernel-mode. Lycosid must therefore manufactureasions
where the VMM returns to user-mode. It accomplishes thisby a
ranging for high-resolution timer interrupts to occur a ghtme
after a return to kernel-mode. The small extra intervalveddhe
operating system to complete its current taslg( interrupt pro-
cessing) and return to user-mode where the guest is ultiyniate
terrupted. An appropriate length for the timer interval tendeter-
mined automatically within the VMM by repeatedly increasthe
interval until most timer interrupts occur in user-mode. Byit-
ing patches to user-mode code, the normal guest operatstgrsy
scheduler is free to de-schedule a patched process anddtesrsy
remains stable.

In our implementation, after a patched process accumukates
certain amount of CPU time, chosen from a configurable, uni-
formly random interval, the patch is removed and the prodess
allowed to continue its normal execution. Patches arelipsitae-
peatedly according to a configurable patch schedule. Psesdkat
are patched experience reduced performance, but areltvileal
to make progress. When CPU inflation is enabled, patching-is a
plied across all running processes. Lycosid enables CPbkiol
when the detection module indicates hiding but the ideatifi
module is unable to identify the hidden processes.

5. Evasion

We claim that Lycosid is less vulnerable to evasion by guefit s
ware than previously presented VMM-based security sesvite
this section we describe our rationale for the claim and astidbe
two potential attacks on Lycosid as well as countermeasures

(S)

5.1 Attacking the Trusted View

If a VMM-based security service depends on the correctnissyo
guest-level component, it is vulnerable to malicious cptian of
that component [8]. For example, if a VMM uses the integritihe
guest operating system process list to determine when gsese
have been hidden, it is subject to evasion when a rootkitdase

%n direct kernel object manipulation corrupts the list. Thetkit

leaves the list in a consistent, but incorrect state. A VMMildo
use additional explicit information about other system poments
(e.g., thread scheduling queues) to detect inconsistdieysame
approach has been taken by guest-level hiding detectotsff#6
which there are, unfortunately, malicious work-arounds I this
case, the VMM has no detection advantage over a guest-avkel t
because the information the VMM uses is fundamentally olethi
from the guest.

Unlike previous approaches, the trusted view of operatysg s
tem processes used by Lycosid is based on implicitly obthine
information about observed guest virtual machines. Therina-
tion is derived from fundamental behaviors of the guest ajiey
system. For example, Lycosid uses process informationigedv
by Antfarm. Antfarm obtains its process information by alvgey
how a guest OS manages its virtual address spaces. To evade Ly
cosid, an attacker must modify how an infected OS implemants
core subsystem (virtual memory) and must do so in a way that re
mains consistent with its desired user-level view of preess

5.2 Attacking the Untrusted View

Lycosid depends on an untrusted, user-level process viee/v@y

to attack Lycosid is to manipulate its user-level view. Thiaek
works by desynchronizinghe untrusted, user-level view used by
Lycosid and the user-level view used by a defender to detect u
expected processes.¢, Windows task manager). In the desyn-
chronization attack, an adversary hides the presence ofieious
process from a defender, but doesn't hide it from Lycosidthis
way Lycosid fails to detect hiding because, from its pertipecno
hiding takes place. A defender fails to detect the hiddercgse
because, from their perspective, the malicious process woieex-
ist. Figure 2 shows a conceptual example of the desynctatioiz
attack.

H 1
Lycosid . Guest
Trusted View Untrusted View 1 Task Manager
0x49B2 winlogon.exe 1 winlogon.exe
0x2A4D csrss.exe 1 csrss.exe
0x338C explorer.exe 1 explorer.exe
0x5522 services.exe 1 services.exe
0xAA2D svchost . exe svchost . exe
0xDA2F spoolsv.exe 1 spoolsv.exe
0x41DE hideme.exe 1
C A 1
1
]
1
Total = 28 Total = 28 1 Total =27
Matching lists ! No suspicious
No hiding I processes
1

Figure 2. Desynchronization Attack. The figure demonstrates the desyn-
chronization attack concept against Lycosid hidden preak=ection.

To successfully mount this style of attack, an adversarytmus
be able to reliably identify process enumeration requestdaron
behalf of Lycosid. In the general case, this task will be diiffi be-
cause Lycosid uses the same standard APIs to enumeratsgesce



as any other process introspection tool lijje or the Windows task
manager. Additionally, Lycosid is not limited to using agimtool
with a fixed signature to obtain its user-level process vigwan
attacker cannot easily rely on a fixed signature databaseafik
Lycosid probe programs. In the same way, there are manyrelifte
tools that can be used by a defender to enumerate procesges (
ps, top, task manager, pslist, tasklist). For the sake sfdt§cus-
sion, however, we will assume an attacker can reliably ifieand
preferentially handle any Lycosid process enumerationest]

Lycosid is designed to be a part of a larger, comprehensive
security monitoring framework. Such a framework would irdg
a process monitoring component that continuously obsettves
process list and generates an alert when unexpected ocCEWspI
processes are encountered. It is just such a security éetitat an
attacker hopes to deceive by hiding their malicious praeesthe
desynchronization attack described above assumes thattdbess
view used by the process monitor component is different from
the view used by Lycosid. By integrating the process moratut
Lycosid so that they both use the same user-level process thie
opportunity to desynchronize is removed and the attack.fail

In summary, Lycosid is perhaps best described as “diffgrent
subject to gaming and evasion on the part of compromisedgues
We believe the effort required to subvert Lycosid whilelstikin-
taining a fully consistent outward appearance exceedflearlier
VMM-based detectors. This is a key feature of VMM-based secu
rity services based on implicitly obtained information amises
the bar against malicious process hiding.

6. Implementation

Lycosid is an extension to the Xen [7] VMM. The implementatio
of Lycosid is split between the Xen hypervisor and userilgve-
grams that run in Xen’s privileged control virtual machine.

Antfarm [15] is one hypervisor component. It infers informa
tion about guest operating system processes by obserihgen-
tural events like page table updates and context switchet$arin
provides the basis for Lycosid’s hidden process detectiohiden-
tification. CPU inflation is also implemented as a core hygen
feature. It interposes on Xen'’s virtual CPU scheduling amatsw
page table handling to selectively and safely patch usel-|go-
gram code. Lycosid adds approximately 850 lines of C codbéo t
hypervisor.

The data collection and analysis components of Lycosidthat
plement its hidden process detection and identificatiotufea are
implemented as user-level programs running in a Linux guiest
tual machine. They communicate with the hypervisor comptse
of Lycosid via private VMM interfaces that are only availabh
Xen'’s privileged control VM. The analysis components arét-wr
ten in python and total approximately 6000 lines of codeldiig
statistics libraries and interfaces to libR.so [24], aistaial com-
puting library.

By partitioning Lycosid, only necessary components areeddd
to the hypervisor itself allowing it to remain relatively afh which
is a desirable security property. The analysis componeetsier-
mal user mode programs which can fail and be restarted withou
compromising the integrity of the whole system. They opeiat
polled batch mode which removes them from any synchronatis cr
ical path and allows them to amortize the cost of their comizain
tion with the VMM over many observations.

7. Evaluation

In this section we evaluate the performance of Lycosid'sess
detection and identification. We want to measure accuraunglit
ness, and runtime overhead. Accuracy is the ability of Liccts
correctly detect and identify hidden processes measureerims

of false positives and false negatives. Our timeliness rax@ats
measure how long it takes Lycosid to come to its conclusions.

7.1 Experimental Environment

Lycosid is an extension to the Xen [7] VMM version 3.0.3-tegt

We use Linux kernel version 2.6.16 in Xen'’s privileged cohtir-

tual machine. We evaluate Lycosid using two guest operatyisg
tems. The first is the retail version of Microsoft Windows 200
Professional. The second is a default installation of Redm
terprise Linux 4.3. Both guests run unmodified using Xen% fu
virtualization support enabled by the Intel virtual maehiexten-
sions (VMX) [14]. Our experimental host has a 3.0 GHz Pentium
D processor and is configured with 4 GB of system memory. Both
privileged and unprivileged virtual machines are allodsié2 MB

of memory. The system contains a single Seagate 7200 RPM Bar-
racuda SATA hard disk drive.

7.2 Detection Evaluation

In Section 3 we noted that hidden process detection is coatplil
by multiple factors. For example, measurements made by khiglV
cannot be perfectly synchronized, implicit informatiomdaze sub-
tly inaccurate, and unrelated process creation and exityanake
the measurements obtained by Lycosid unstable.

The key variable affecting the ability of Lycosid to deteitiden
processes is how much unrelated process creation and &xityac
is occurring within the monitored virtual machine. Processation
and exit activity tends to inject variability into the qudigs mea-
sured by Lycosid and can magnify other, latent sources dganee
inherent in the implicit measurement process like lag tirh®&].[
This section evaluates Lycosid’s ability to accuratelyedét hid-
den process in spite of these concerns.

7.2.1 Detection with Interference

Our detection experiments evaluate the accuracy and tiessiof
Lycosid when detecting a single hidden process. When mane th
one process has been hidden, the difference between the VMM
and user process lists is larger, making detection easiemcé]
detecting a single hidden process is a worst case detecoago.

To generate process activity we use a synthetic process-gene
ator that spawns processes randomly. Harchol-Balter anehBy
indicate in their study [11] that process arrivals are barsthan
Poisson. We use a pareto distribution with shape parameterl
for process inter-arrival times. We control the average wftpro-
cess creation by varying the pareto location parametes distri-
bution leads to large process creation bursts which sttessle-
tection techniques. The process lifetime distributioncdegd by
Harchol-Balter and Downey applies to processes whosentiéet
exceeds one second. The arrival rates we use to stress dycosi
however, are too high to support such long lived processesa A
result, we choose process lifetimes from the uniform distion
on the interval from 0-1 second, which allows our test system
remain stable.

To hide processes under Windows, we use the rootkit tool
f u. exe and its accompanying device drivesdi r ect x. sys [9].
This tool hides Windows processes by unlinking the target pr
cess from the kernel process list. Under Linux we simulatigléin
processes by filtering process information in our guest gssc
reporting tool. Unlikef u. exe, most recent Linux rootkits hide
themselves and manipulate various logging and securityfes
making them inconvenient to use in a research setting.

To motivate our use of statistical techniques, the left sideig-
ure 3 shows how the magnitude of the difference between VMM
process count and guest process count used by Lycosid vaees
time when the system is subjected to different levels of ggscre-
ation and exit activity under Windows. As process activitlgreases
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Figure 3. Process Count Difference and Detection TimelinesThe left figure shows a timeline of the difference betweemiibeess list length obtained
within the VMM and from the guest operating system for varitmvels of process creation and exit activity. As procesisigcincreases the variability in
the measured difference increases. The right figure showmsedinne of the hypothesis test p-values used in the deteptimcess for each of several levels of
process creation/exit activity. The p-values approachddiection threshold over time.

from one to an average of 100 processes/second, the vaiace
magnitude of the difference increase. This characteridtibe de-
tection problem suggests the use of statistical infereecieniques
to probabilistically determine if hiding is occurring.

The right side of Figure 3 provides intuition about how the p-
value resulting from the hypothesis test used by Lycosiceimen-
tally approaches the detection threshold. The test prasdgdden
immediately when each experiment begins. Detection ocghen
the p-value drops below = 2 x 10~%, which is shown as a dashed
horizontal line. In each case an orderly progression tovdgtec-
tion can be seen.

Figure 3 also hints that detection time increases with m®ce
activity. To quantify this effect, time to detection was reeged for
our various process activity levels. The results for Windaand
Linux are shown in Figure 4 where the Y-axis reports the time
to detection and the X-axis indicates the process actiatgell
The values shown for each level are the average of 10 tridls. T
standard deviation of detection time is shown using errcs.tioth
detection time and its variance increase with processioreand
exit activity. In the worst measured cases, under severeepso
load, Lycosid requires several minutes to detect the higdecess.
Since hidden processes are typically long lived (on the roade
hours or days) detection times of several minutes are noth re
concern. In all of the experiments shown, Lycosid corred#tects
the hidden process.

An important output of a positive detection result is anreate
of the number of processes that have been hidden. In the-detec ] o ) o
tion experiments described above, a single process wasihigo, Lycosid detection is meant to run continuously, so it is imtgiot
in each case a good estimate will be close to one. Figure 5sshow that itimpose minimal runtime overhead. To evaluate thetued
a summary of the estimated number of hidden processes elitain ©Of the detection phase of Lycosid we compare the runtimes for
when a single process has been hidden under both Windows andhree Windows benchmarks when they are run under Lycosid in
Linux. When process load is small to moderate, the estimaiet detection mode and when run under an unmodified Xen hyperviso
ber of hidden processes is good, leading to a correct idestiiin Table 1 shows the results. Each value is an average of five. tie
of one hidden process. Under extreme process creation anhd ex observed no significant variance between trials.

load, the estimates begin to experience larger error aratgyreari- Lycosid primarily adds overhead to Xen's shadow page table
handling and virtual address space switching. The first tamch-

ance. This error may result in falsely identifying a nonded pro-
cess as hidden during the identification phase. Howevecanger-
vative p-value identification threshold tends to reducectience of
false positive identifications. The direction of the errader Win-
dows and Linux is different. Under Windows, Antfarm detguts-
cess creatiomeforethe operating system reports its creatioa,,
process creation lag is negative under Windows. The oppdsit
true under Linux; Antfarm detects process creation afterQis re-
ports it. High interference and load levels exacerbateagaihder
both operating systems leading to larger deviations, bapposite
directions.

7.2.2 False Positives

In addition to reliable detection, it is important that Lyit not
report hidden processes spuriouslg,, that its false positive rate

is small. Our statistical procedure predicts about onefpissitive
result per year. To explore this question empirically, apezknent
was performed using a Windows guest in which no process was
hidden in our most challenging detection environment (1@2gss
creations and exits/second). An 11 hour timeline from theeeix
ment is shown in Figure 6. As can be seen, no trend toward false
detection is apparent and no false detections occur. Theriexpnt
does not prove the formal claim of few false positives, botjies
empirical support.

7.2.3 Performance Overhead
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Figure 4. Time to Detection. The figure shows how the time to detect a hidden process Vari®¥indows and Linux as process creation and exit activity
increases from 0 processes/second to 100 processes/sdtwndalues shown are an average of 10 trials. Error bars stimastandard deviation of detection
time.
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Figure 5. Estimating the Number of Hidden ProcessesThe figure shows how the estimate of the number of hiddengzes®btained from the detection
phase varies for Windows and Linux as process creation aidetwity increases from O processes/second to 100 psesgsecond when a single process
has been hidden. The values shown are an average of 10 tats:. bars show the minimum and maximum hidden process &gtiobserved.

Benchmark Lycosid xen | % OH 7.3 Identification Evaluation

‘ Runtime ‘ Runtime In this section we evaluate the ability of the identificatédgorithm
CreateProc 6.551 s 6.222 S 5.3% described in Section 4 to identify which processes have higielen
MemAlloc 6.803 s 6.565s| 3.6% once the detection component provides a positive hidingatdr.
Compile 25386s| 25.210s| 0.7% As in the evaluation of the detection phase, this evaludtionses

on Lycosid’s accuracy and timeliness. In this case, acgumty-
cosid’s ability to correctly identify hidden processes.r@meli-
ness experiments quantify how long it takes to positivebniify
the correct hidden processes.

Table 1. Detection Runtime Overhead.The table shows runtimes and
overheads for three benchmarks run under Lycosid and undetistine
version of Xen.

7.3.1

Our first experiment measures how Lycosid performs wherefbrc
to choose among varying numbers of active processes. Inxthe e
periments, a number of processes (from 1 to 50) is creatazh &fa
performance. Th€reateProdenchmark creates and then destroys the test processes alternately runs and sleeps. The ruistchesen
1000 processes as quickly as possible. WemAllocbenchmark randomly from the range 0-500 ms using a uniform distributio
allocates a 200 MB segment of memory, then touches each pageSimilarly, a sleep interval is chosen from the interval 08Q.0ns.
causing many minor page faults and page table updates. MemAl One of the test processes is hidden using the same techridgques

Identification Among Many Running Processes

marks spend nearly all of their time performing these twdkdas
and can be considered worst case scenarios for Lycosidstita

loc is repeated five times in each trial. Our prototype exgerés

scribed in Section 7.2.1. Experiments were performed wjthQl

5.3% overhead for CreateProc and 3.6% overhead for MemAlloc 25, and 50 total processes. At each level, 10 identificati@hst

The final benchmark is representative of a more common, But st
demanding, workload. It consists of building the bash sbmlirces

were performed. Lycosid correctly identifies the singledad pro-
cess in all cases. The time to identify the hidden procesbdtr

using gnu make and gcc. In this case, Lycosid adds a tiny 0.7% Windows and Linux guests is shown in Figure 7. The left hand ba

overhead.

show how identification time and standard deviation incessthe
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Figure 6. Timeline without Hiding. The figure shows an approximately 11 hour detection timelihen no processes are hidden and very aggressive
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difference between the VMM and guest process counts. Nodatections occur.
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Figure 7. Time to Identification. The figure shows how the time to identify hidden processegsgas the number of total active processes increases from 1
to 50 processes for both Windows and Linux. The values shemaneaverage of 10 trials. Lycosid identified the correcidaid processes in all cases on both
platforms. Error bars show the standard deviation of idicdition time. The left bar corresponds to trials in which agde process was hidden. The right bar
shows results when 5 processes were hidden.

number of active processes grows when one process has lzken hi process case, but not significantly. Hence, Lycosid ideatifdn is
den. Detection time and variance grow because larger nigydfer  accurate, portable across guest operating systems aridadpelin

competing processes decrease the effective runtime ofitluein cases where multiple processes have been hidden.
process. Hence, more samples are required to associatatirae o )
of the hidden process with the regression response varialbe 7.3.2 Identifying Mostly Idle Hidden Processes

face of measurement noise. ) Our next series of experiments demonstrates that a loweintan
Hiding multiple processes is a common scenario when an at- hound exists beneath which Lycosid cannot identify whicsei-
tacker has several distinct tasks to accomplish on a comipesm g5 processes is hidden. We then test the ability of CPUtiofla
system. Does identification become more difficult when mbeaat to overcome the issue.
one process has been hidden? Our second experiment isrsimila e first perform two variants of an earlier experiment in whic
to the first, but in this case 5 out of the 10, 25, or 50 total pro- e process is hidden among 10 total active processes urider W
cesses have been hidden. Again, Lycosid correctly idesifidid- dows. In each variant we change the runtime of the hiddenassoc
den processes correctly for both platforms. The right haad n along one of two axes. The first axis is busy time,, the time
Figure 7 show that the time to identification grows for the tiaul between sleep intervals. The second axis is run frequéecythe



Avg. Runtime (s) | Avg Sleep Time (s)| % True ID | % False ID | % No ID
0.25 0.5 100% 0% 0%
0.025 0.5 90% 0% 10%
0.0025 0.5 0% 0% 100%
0.25 5.0 100% 0% 0%
0.25 50.0 0% 0% 100%

Table 2. Identification under Reduced Runtime. The table reports the identification accuracy of Lycosiddaet of experiments in which a single hidden
process must be identified among 10 active processes whdridihen process runs exponentially less and less often. ésetative runtime decreases,

Lycosid’s ability to classify a process as hidden or bengimipaired.

length of the sleep intervals. Reducing runtime along eiiés de-
creases the signal-to-noise ratio between hidden prodekktithe
and the measurement error experienced by Lycosid. Thet édfex
make identification more challenging.

erating system data structures is used to obtain a trusexd of
the guest operating system process list. Lycosid exterals/ il
concept by using only implicitly obtained guest informatiwithin
a VMM. No implementation details are required. This allows L

In the first set of experiments we reduce hidden process busy cosid to be deployed in situations where version and patedH

time by factors of 10 and measure the ability of Lycosid taniifg
the hidden process. In the second round of experiments wedise
the sleep interval by factors of 10 and again evaluate if kitcoan
identify the hidden process. Table 2 lists the runtime patens
for the hidden process in each experiment and the percewnfage
10 trials in which Lycosid successfully identifies the sebidden
process.

When the busy time is reduced from earlier experiments by a
factor of 10 Lycosid correctly identifies the hidden pro@assin
only 9 of 10 trials. After reducing the runtime by a factor d¥Ql
no process exceeds the identification threshold p-valuerédhe
implementation sample limit of 1000 is reached; hence, nogss
is identified as hidden. When the sleep time increases bytarfac
of 10 or 100, none of 10 trials produces a positive hidden gssc
identification. Note that in no case do false positives adaelr no
innocent processes are accused of being hidden. We seevdrpwe
that if a hidden process runs for limited periods, even ifuihs
regularly, or if a hidden process runs infrequently, Lycdosannot
identify it properly. Even in these cases, however, Lycasidectly
detects that process hiding is taking place.

Table 3 shows the results of applying CPU inflation to identifi
cation tasks in which the hidden process runs for short deraf
time or rarely runs. Our evaluation shows that CPU inflation e
ables Lycosid to identify processes whose average busyisiag
low as 250us. The table also shows that even when a hidden pro-
cess runs relatively rarelg(g, once every 500 seconds on average)
CPU inflation makes the hidden process identifiable by Lytosi
Finally, when the hidden process’s average sleep time escie
amount of time over which Lycosid makes observations (orneeye
5000 seconds vs. approximately 1000 seconds of obsentitien
in this experiment) Lycosid is naturally unable to reliabdgntify
the hidden process. Our evaluation shows that CPU inflaian i
powerful tool that significantly extends the set of hiddeogaisses
that Lycosid can reliably identify.

8. Related Work

Cross-view validation for hiding detection has been stidiad
variously implemented in user applications [5], within tbger-
ating system kernel [30], inside a virtual machine monitbd][
and using dedicated coprocessor hardware [23]. The keyxtspe
cross-view validation that differentiates these effostthie mecha-
nism used to obtain the low-level, trusted view of the resewsf
interest.

Garfinkelet al,, have shown the value of VMM-level cross-view
validation for detecting hidden processes with VMI [10]. Yikes
explicit operating system debugging information to locatel in-
terpret private kernel data types at runtime. This insigib iop-

specific debugging information is unavailable or inconeatito
maintain as a system is patched and upgraded.

Instead of a guest kernel-level view of the process list &l us
by VMI, Lycosid uses a true VMM-level process view. The VMM
view, which is based on observations of guest virtual addres
spaces, should be more challenging for malicious softwarad-
nipulate. More fundamental aspects of the execution of ddrid
process would need to be altered to enable evasignhow a pro-
cess uses virtual memory and how the operating system atscoun
runtime to processes.

Many systems employ statistical techniques to infer behravi
to provide input to control algorithms, and to implementiséy
classifiers. For example, MS Manners [6] uses hypothesigtes
to regulate the scheduling of low-priority background psses
and reduce their performance impact on high priority fooegd
jobs. Junget al. [18] probabilistically determine whether remote
hosts are conducting port scanning using sequential hgpisth
testing techniques [29]. One of Lycosid’s key featuresgsuge of
statistical inference techniques to overcome the noisédomental
to the implicit information it uses.

9. Conclusion

Lycosid is a novel VMM-based hidden process detection aed-id
tification service. The key difference between Lycosid areljpus
VMM-based hidden process detectors is Lycosid’s use ofiuitiyl
obtained information about the guest operating systemeiititors.
Implicit information decouples Lycosid from the guest OSl at
lows it to take better advantage of its placement within a VMM
For example, Lycosid does not depend on the consistencyvatter
guest OS data structures, so it is less vulnerable to goestted
evasion attacks. Similarly, Lycosid does not depend ontgD&s
implementation details, so it can be portable across vdfgrdint
operating systems.

Using implicitly obtained information within a VMM can be
challenging because it is often noisy or wrong. Lycosid pies
an accurate and reliable service in spite of its noisy ingayts
using statistical inference techniques like hypothesisirtg and
regression to trade detection and identification time fauaacy.

In our evaluation, Lycosid correctly detected processrydn
each of hundreds of trials. Identification is similarly rebexcept
in cases where a hidden process does not run long enough-or fre
quently enough. Lycosid uses a new technique, called CP&-infl
tion, that can force some difficult to identify processe® iah ex-
ecution regime in which a hidden process can be positivedytie
fied.

The detection components of Lycosid, which are designed to
run continuously, impose a very small runtime overhead viloest-



Avg. Runtime (s) | Avg Sleep Time (s)| % True ID | % False ID | % No ID
0.025 0.5 100% 0% 0%

0.0025 0.5 100% 0% 0%

0.00025 0.5 100% 0% 0%

0.025 5.0 100% 0% 0%

0.025 50.0 100% 0% 0%

0.025 500.0 100% 0% 0%

0.025 5000.0 20% 0% 80%

Table 3. Effect of CPU Inflation. The table shows how CPU inflation can help make hidden presdsat run relatively little identifiable by Lycosid. In
the experiments, a single hidden process must be identifieth@ 10 active processes when the hidden process runs tilerptiinfrequently. CPU inflation
forces the hidden process to run more, providing Lycositi tie information it needs to make a positive identificatfhen average sleep time exceeds the
maximum sample period, Lycosid naturally fails to reliatlgntify all hidden processes.
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