

An Overview of the US Work to Complete the Design of Blanket Shield Modules 7, 12 and 13 for the ITER Project

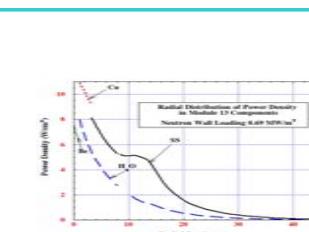
M. Ulrickson, R. Coats, J. Garde, J. Kotulski, G. Natoni, M. Pasik, T. Tanaka, and D. Youchison

Sandia National Laboratories, Albuquerque, NM USA

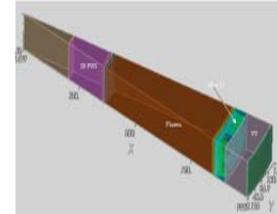
J. Bullock

Orion International, Albuquerque, NM USA

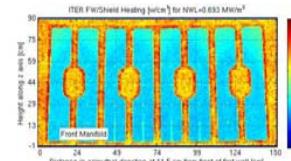
M. Sawan and P. Wilson


University of Wisconsin, Madison, WI USA

A. Ying and M. Narula


University of California Los Angeles, Los Angeles, CA USA

Part of the US contribution to the ITER project is Blanket Shield Modules (BSM) number 7, 12 and 13 comprising about 20% of the ITER First Wall. These modules are all in the upper half of the vacuum vessel. Starting from outlines of each style of module, general design rules contained in the ITER Design Description Document (DDD), design memos, and CATIA interface drawings, the US Team has worked to fill in the details of the internal water cooling passages, slits to control eddy currents, and methods for efficient and reliable manufacturing of the BSM. Our analysis begins with nuclear heating assessment of complex 3D structures containing water, copper, and steel carried out by the University of Wisconsin using a version of MCNP that connects directly to CATIA to get the geometry. Computational Fluid Dynamics (CFD) analysis of the coolant flow distribution and pressure drop in a shield module provides the basis for thermal transfer from the BSM to the coolant. The size and position of coolant passages are adjusted to optimize the heat transfer and eliminate hot spots. ITER specified major disruption (MD) and downward vertical disruption (VDE) events are used to calculate the currents induced in the BSM. In this modeling it is necessary to include the vacuum vessel and other BSM near the modules of interest. In order to benchmark our Electromagnetic Code against the one used for the DDD analysis, we calculated eddy currents and forces on all 18 BSM in a simplified model that matched the DDD analysis. The eddy current forces are used to determine the torque and net force on the BSM. These forces are compared to the load capacity of the mounts and adjustments made to eddy current control slits as needed. Dynamic analysis of the eddy current induced stresses on the BSM and mounts are performed using the ABAQUS code. Static thermal and pressure stresses are calculated using the temperature distributions from CFD analysis. The primary and secondary stresses are compared to the allowables specified in the ITER Structural Design Criteria to determine the suitability of the design to the ITER needs. Manufacturing processes are being created through a series of mockups and prototypes of sub-scale parts. This paper will describe the results of these analyses that have led to a Preliminary Design for the US contribution of BSM 7, 12 and 13.

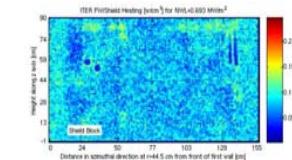

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Results from 1D neutron heating analysis of BSM13

The 1D/3D hybrid model of SM13 in MCNP

Nuclear Heating at the plasma side of SM13

Neutron heating of BSM

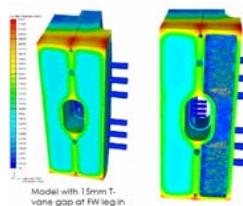

1D analysis

Non-homogeneous slabs of material representing the composition of 6 zones in the BSM for rapid assessment of the heating

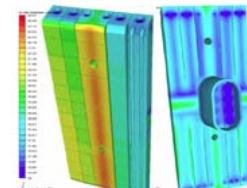
1D/3D hybrid analysis

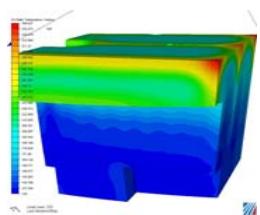
Full 3D geometry in BSM but a cylindrical representation of the plasma to derive more accurate heating profiles in BSM. We found that the radial coolant holes do not cause increased heating behind a BSM.

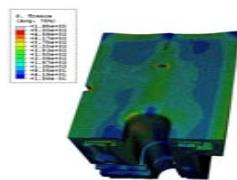
Full 3D planned.



Nuclear Heating at the vessel side of SM13

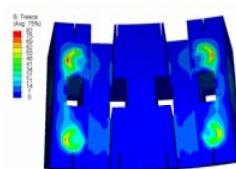



Heat Transfer and Fluid Flow Analysis

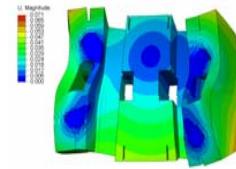

SM7 Temperature distribution (left) and fluid flow distribution (right)
Model with 1 prim. T. vane gap at FW leg in

Typical FW temperature distribution with 0.5 MW/m² plasma heating

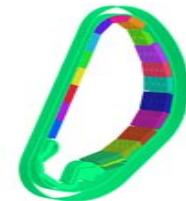
Temperature distribution in SM13


Thermal Stress in SM13

Summary of thermal stress analysis

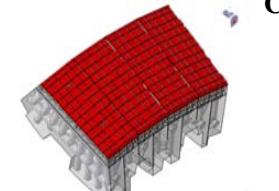

Analyses	Max Temp °C	Sm at Max Temp, MPa	Acceptable S _m Level	Acceptable Stress Level, MPa
SM 13 Corner Thermal	340	109	3S _m	327
SM 13 Corner Pressure	340	109	S _m	109
SM 13 Mid Thermal	311	113	3S _m	339
SM 7 Corner Thermal	290	116	3S _m	348
SM 7 Corner Pressure	290	116	S _m	116

Model/ Material	Max Temp °C	Sm at Max Temp, MPa	Acceptable S _m Level	Acceptable Stress Level MPa
FW13 SS316LN-IG	305	114	3S _m	342
FW 13 CuCrZr	224	104	3S _m	312
FW 13 Be(S-65C)	262	75	3S _m	225
FW7 SS316LN-IG	203	129	3S _m	387
FW 7 CuCrZr	186	118	3S _m	354
FW 7 Be(S-65C)	229	78	3S _m	234


Stress and Deflection from static application of Electromagnetic Loads (SM7)

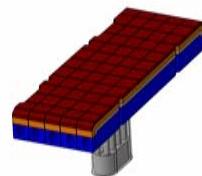
Stress near the mounts due to Major Disruption for SM7. The maximum load was applied statically.

Deflection of SM7 due to static application of Major Disruption EM load (maximum value). Display magnified by 1000.



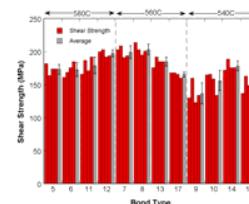
10° sector model of all 18 SM for electromagnetic analysis

Catia Design Results

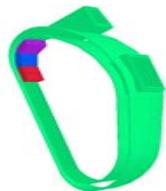
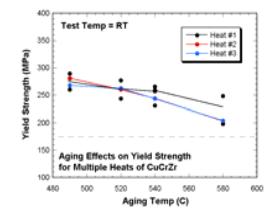
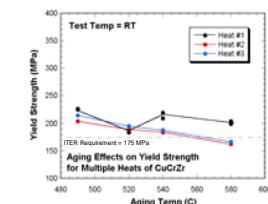

Blanket Shield Module 7 (BSM7)

Shield Module 12 showing internal details

Blanket Shield Module 13

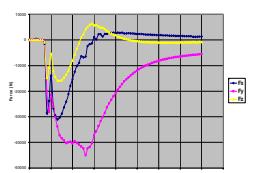


Typical First Wall (FW) Panel




Fabrication Mockup of FW finger

Summary of FW joining R&D

- High strength joints between Be and Cu are being made by Hot Isostatic Pressure methods.


- Water quenching improves the Cu strength after Be tile joining.

20° sector model of SM6, 7 and 8

Electromagnetic Analysis of Disruptions

20° sector model of SM11, 12, 13 and 14 with port shield module

Net Force on SM13 during Major Disruption

Torque on SM13 during Major Disruption

Results shown for Major Disruption with 36 ms linear current decay.

Conclusions

- The 3D structure in the FW and SM must be modeled accurately to get accurate predictions of the nuclear heating.
- The smallest segment of the SM that can be modeled for fluid flow analysis is 1/8.
- Thermal stress in the FW and SM are within the design allowables for the baseline configuration.
- Disruption analysis should be done on a 20° segment of the machine because the effects of the ports are important
- It is necessary to water quench the Cu alloy to 316LN structure after bonding to assure meeting ITER strength requirements
- We have completed Conceptual Design of BSM 7, 12, and 13.

