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Used

Fuel Introduction, Objectives and Approach
Disposition

B Thermal-mechanical data for natural system (NS) minerals and
engineered barrier systems (EBS) materials are critical to assess their stability
and behavior in geologic disposal environments for safety assessments.

B Thermodynamic Data Gaps and Research Needs: NS minerals surrounding the
waste package (e.g. clays, complex salts, granite...).

B Objectives: Using parameter-free first-principles methods to:

— Calculate missing thermodynamic data needed for geochemical & SNF degradation
models, as a fast and systematic way to predict materials properties and to
complement experiments.

— Provide an independent assessment of existing experimental thermodynamic data
and resolve contradictions in existing calorimetric data.

— Validate our computational approach using high-quality calorimetric data.

B Approach
— Structural optimization using density functional theory (DFT) [VASP code].

— Use density functional perturbation theory (DF-PT) to calculate the phonon
properties of materials relaxed with DFT and derive their thermal properties.
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Used

Fuel Computational Methods
Disposition
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::Jseld Clays: Structure & Thermal-Mechanical
ue Properties of Kaolinite (Al,Si,O;(OH),)

Disposition

B Expt.: V=328.708 A3

a=5153A, b=8942 A c=7.391A
a =91.93°, B = 105.05°, y = 89.80°.

B Standard DFT: V= 340.11 A3

a=521A b=9.05A, c=748 A
a=91.8° 3 =105.1°,y = 89.7°.

B DFT + van der Waals correction
(DFT-D2): V=329.03 A3

a=518A, b=899A,c=733A
a=91.6° 3 =105.1°, y = 89.8°.

Volume calculated with DFT-D2
overestimates experiment by less
than 1%, while standard DFT

- Important to use DFT corrected for overestimates expt. by ca. 3.5 %.
dispersion interaction for layered
systems such as clays. - All the following calculations were

carried out at the DFT-D2 level.
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Used
Fuel
Disposition

Clays: Structure & Thermal-Mechanical
Properties of Kaolinite (Al,Si,O;(OH),)

— DFT-D2, hydrostatic deformation Two types of cell deformation:
-232.92 — — DFT-D2, z-axis uniaxial deformation B Hydrostatic deformation
B Uniaxial deformation (along

the z-axis normal of the layers)

23293~ Bulk modulus (Birch-Murnaghan
3rd-order equation of state):

B Expt.: B, = 44-56 GPa

B DFT, hydrostatic: B,=54 GPa

B DFT, uniaxial: B, = 116 GPa

Total Energy (eV)

-232.94 —

- Strong impact of the system
| | | | | | | anisotropy on the mechanical-
BTV R 328 30 33 334 136 elastic properties of the clays.

. 3
Unit Cell Volume (A") P: pressure; V,: ref. volume;
3By
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Used Clays: Structure & Thermal-Mechanical

Fuel . - i
Disposition Properties of Kaolinite (Al,Si,O;(OH),)
600 Isochoric calculations:

— DFPT-D2, z-azis uniaxial deformation, this study
— DFPT-D2, hydrostatic deformation, this study

500 (O Expt., Robie & Hemingway 1995
O Expt., Schieltz & Soliman 1964
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B Calculated entropy using
uniaxial deformation of
the unit cell is in excellent
agreement with
experiment.

B Entropy computed using
hydrostatic deformation
always underestimates
data derived from
calorimetry.

-> Uniaxial deformation of
the cell maximizes the
entropy compared to
hydrostatic deformation.

- Thermodynamic driving
force for the formation of
layered structures.



Used
Fuel

Disposition

Clays: Structure & Thermal-Mechanical
Properties of Kaolinite (Al,Si,O;(OH),)

400

Cp (.l.mol'I.K'])
lé,
[

l | l ' l

— DFPT-D2, z-axis uniaxial deformation, this study
- == DFPT-D2, hydrostatic deformation, this study
O Expt., Robie & Hemingway 1995

Isobaric calculations:

N M Calculations carried out
within the quasi
harmonic approximation
(QHA), at a fixed
pressure of 1 bar.

B Computed isobaric heat
capacity using uniaxial
deformation of the cell
reproduces calorimetric
data

o Cp calculated with
hydrostatic deformation
underestimates
calorimetric data for
temperatures < 600 K.
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Used R&D Highlight on Crystalline Salts:

Fuel - ] )
: . Anhvydrite, Polyhali n rnalli

Disposition ydrite, Polyhalite and Carnallite
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Used R&D Highlight on Crystalline Salts:

Fuel . . ]
: . Bischofite and its Dehydrated Phases
Disposition y

50/ (a)MgCly-6H,0 3 (b) MgClaH,0 ' 0 MgCl,6H,0  MgCly4H,0
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_ MgCl -4H,0 — MgCl -2H,0 + 2H,0
(Experimental data for the entropy: FactSage

FACTPS database.) MgCl,-2H,0 — MgCl -H,0 + H,0
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Used R&D Highlight on Crystalline Salts:

Fuel i : :
: .. Bischofite and its Dehydrated Phases
Disposition
100 = —— —r——— 300 _
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