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Wear in nanoscale

 a centimeter-scale part having a 10 year lifetime 

would be expected to have a 30 sec lifetime      

if scaled to nanometer dimensions.

L
rate  erosion

thickness
lifewear
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Needs for nano-scale tribological study
(adhesion, friciton, wear)

200 nm

Physical contacts in MEMS are 
composed of many nano-asperity 
contacts…

Kendall, Science 263, 1720 (1994)

At nanoscale, forces that are negligible 
at the macro-scale become comparable 
to the actuation forces provided with on-
chip actuators. 



Current “State-of-the Art”

Advantages:
 Easily incorporated into device while being fabricated

 Reduces friction

Disadvantages:
Not always conformal (cover all surfaces)

Doesn’t last forever → lubricant is not replenished

Substrate

Solid lubricant (thin film coating)

Moving part
Moving part

Kim SH, Asay DB, & Dugger MT, "Nanotribology and MEMS" NanoToday 2 (5): 22-29, 2007 



Wisdom from conventional liquid-phase 
lubricants

Substrate

Moving part

Liquid lubricant

Advantages:
 Continuously replenish lubrication film

 Liquid is fully conformal  works on buried surfaces

Disadvantages esp. at micro- and nano-scales:
Dragging of  viscous liquid cause power dissipation problems



In-situ Vapor Phase Lubrication

Advantages:

Lubricant is continuously replenished

Coats all surfaces exposed (Totally Conformal)

No Power Dissipation (vs. liquid lubricants)

Substrate

Moving part



Gas Phase Lubricants

Primary Alcohols (Ethanol 
– Pentanol)

 Relatively high vapor 
pressure 

 Few monolayers of water 
on hydrophilic surfaces

 Hydrogen bond with Si-
OH surface groups

 LOW SURFACE 
ENERGY
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Key concept: 
K. Strawhecker, D. B. Asay, J. McKinney, and S. H. Kim, Tribol. Lett. 2005, 19, 17-21.



KEY QUESTION

How does gas-adsorption affect the 
tribological properties of the surface?

Effect on Adhesion

Effect on Friction

Effect on Wear



1. Adsorption Isotherm

How thick is the adsorbed film, f(P/Psat)?



Attenuated total reflection FTIR

vent

IR

Alcohol vapor

Silicon ATR Crystal

Penetration depth @ 3000 cm-1 = ~ 300 nm 
 detect adsorbed molecules only

heated
bubbler

1

carrier gas (Ar or dry clean air)

heated
bubbler

2

condenser

ATR-IR  adsorption isomtherm 
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Adsorption on Silicon

Carrier Gas:
Argon

Temperature:
21-23 °C

Error:
± 2 -3 Ǻ
± 3% P/Psat

Measured via: ATR-FTIR
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2. Tribological Properties

Nano-scale study : Atomic Force Microscope (AFM)

Micro-scale study : MEMS

Macro-scale study: Linear Wear Test



Effects of water adsorption
 Adsorption isotherm and structure

 Adhesion and structure

D. B. Asay and S. H. Kim, J. Phys. Chem. B 2005, 109, 16760-16763. 
D. B. Asay and S. H. Kim, J. Chem. Phys. 2006, 124, 174712-1 - 174712-5. 



Nano-asperity adhesion
in alcohol vapor environment



Single Asperity Adhesion
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Capillary force in alcohol vapor environment
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Why the difference?

Macroscopic view of capillary force 

 A liquid with a higher surface tension gives a larger capillary force.

 (erg/cm2)

Ethanol 22.8

1-butanol 24.6

1-pentanol 24.9

But, each alcohol has virtually the same surface 
tension () and adsorption isotherm (h)…



The difference is related to the molar volume 
of the condensed phase…
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Ethanol 58.7

1-butanol 91.2

1-pentanol 108.7



Capillary Force vs. Laplace Pressure 
(Normalized for h and V)
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What’s the big deal?

 Macroscopic view of capillary force due to Laplace 
pressure inside the meniscus:

 As the contact size shrinks, assumptions that are 
valid in the derivation for macroscopic contacts 
break down:

 MOLAR VOLUME

 ISOTHERM

 cos4 RFCapillary 

D. B. Asay and S. H. Kim, Langmuir (in press)



Nano-asperity friction
in alcohol vapor environment



Friction Load Curves

Reduction in Friction

 Reduction in 
Adhesion?

 Reduction in shear 
strength?

 Both?

Silicon AFM tip on Silicon (100) surface at Room Temp 
speed 2 μm/sec

Average Friction Force vs. Load
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Adsorbate Effect on Friction

Ethanol Friction vs Total Load
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Friction Coeff. vs. Vapor Pressure
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Nano-asperity wear behavior in 
alcohol vapor environment



Single Asperity Wear

10 Ǻ deep trench

Full Z-scale ~1nm

In humid air (RH = 75%)



In 75% P/Psat n-Propanol vapor

Full Z-scale ~1nm
Asay, Dugger, Ohlhausen, Kim, Langmuir (in press) 



Macroscopic Scale 
Observations

Linear wear tests in n-pentanol vapor 
environments



n-Pentanol vapor environment
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Profilometry of wear track
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100 um
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Growth of oligomeric film
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Relevance to MEMS ?

•Sidewall Friction  
Device

•500 nN Load

•Oscillations at 100 Hz



Dry N2 Environment

Adhesion
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Dynamic run in 95% P/Psat pentanol vapor
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Conclusions



In-situ Vapor phase lubrication

 Alcohol adsorption provides 
a self-replenishing molecular 
thick lubricant layer

 Alcohol adsorption reduces 
Friction at all length scales 

 Wear within the contact is 
dramatically reduced at all 
length scales

 MEMS failure is prevented 

Average Friction Force vs. Load
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