PENNSTATE

SAND2007- 6952C

Effects of Gas Adsorption in Nanotribology
and Demonstration of in-situ Vapor Phase
Lubrication of MEMS Devices

David B. Asay,!) Michael T. Dugger,? Seong H. Kim

1) Department of Chemical Engineering
The Pennsylvania State University
2) Sandia National Laboratory

ASME/STLE International Joint Tribology Conference
October 22-24, 2007, San Diego, CA



D.M. Tanner, et. al. IEEE (1998)




Wear in nanoscale

wear life o« thlckness oc L

erosion rate

—> a centimeter-scale part having a 10 year lifetime
would be expected to have a 30 sec lifetime
If scaled to nanometer dimensions.



Lifetime depends on weat...
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Needs for nano-scale tribological study
(adhesion, friciton, wear)

At nanoscale, forces that are negligible
at the macro-scale become comparable
to the actuation forces provided with on-
chip actuators.

Physical contacts in MEMS are
composed of many nano-asperity
contacts...
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Kendall, Science 263, 1720 (1994)




Current *“State-of-the Art”

Solid lubricant (thin film coating)

Sel-assembled monolayers Solid lubricant coatings
N\ Moving part o

Advantages:
> Easily incorporated into device while being fabricated
> Reduces friction

Disadvantages:
Not always conformal (cover all surfaces)
Doesn’t last forever — lubricant is not replenished

Kim SH, Asay DB, & Dugger MT, "Nanotribology and MEMS" NanoToday 2 (5): 22-29, 2007



Wisdom from conventional liquid-phase
lubricants

Liquid lubricant

Moving part

Substrate

Advantages:
> Continuously replenish lubrication film
> Liquid is fully conformal = works on buried sutfaces

Disadvantages esp. at micro- and nano-scales:

Dragging of viscous liquid cause power dissipation problems



In-situ Vapor Phase Lubrication

Substrate

Advantages:
> Lubricant is continuously replenished
> Coats all surfaces exposed (Totally Conformal)
> No Power Dissipation (vs. liquid lubricants)



Gas Phase Lubricants

Primary Alcohols (Ethanol
— Pentanol)
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> Relatively high vapor

pressutre

> Few monolayers of water

on hydrophilic surfaces
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calculated from Antoine eq.
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> Hydrogen bond with Si-
OH surface groups

=
o

: Octanol
> LOW SURFACE Y0 20 20 30 30 @0 30

ENERGY Terrperature (K)

Key concept:
K. Strawhecker, D. B. Asay, J. McKinney, and S. H. Kim, Trbol. Lett. 2005, 19, 17-21.




KEY QUESTION

How does gas-adsorption atfect the
tribological properties of the surfacer?
m Effect on Adhesion

m Effect on Friction
m Effect on Wear



1. Adsorption Isotherm

How thick is the adsorbed film, f(P/Ps)?



ATR-IR = adsorption isomtherm

cafrier gas (Ar or dry clean air)

/ condenser
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bubbler  heated Penetration depth @ 3000 cm” = ~ 300 nm
L bubbler - detect adsorbed molecules only
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ATR-IR @ 65% P/Ps

Pentanol
Butanol
— Ethanol
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Adsorption on Silicon

—— WATER —=— Ethanol Propanol —— Butanol =« Pentanol
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2. Tribological Properties

Nano-scale study : Atomic Force Microscope (AFM)
Micro-scale study : MEMS

Macro-scale study: Linear Wear Test



Effects of water adsorption

m Adsorption 1sotherm and structure
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Region A: Region B: Region C:
Humidity 0% - 45% Humidity 456% - 80% Humidity > 80%

D. B. Asay and S. H. Kim, . Phys. Chem. B 2005, 109, 16760-16763.
D. B. Asay and S. H. Kim, J. Chem. Phys. 2006, 124, 174712-1 - 174712-5.



Nano-asperity adhesion
in alcohol vapor environment



Single Asperity Adhesion

Young's Equation

1 1
})Laplace = )/L [_ + _]
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Mechanical Equilibrium

Kelvin Equation

R T P
P Laplace = . ln( j

V Psat

Chemical Equilibrium




Capillary force in alcohol vapor environment

= Ethanol
—@®— Butanol

Pentanol




Why the difference?

Macroscopic view of capillary force

2> A liquid with a higher surface tension gives a larger capillary force.

Y (erg/cm?)
Ethanol 22.8
1-butanol 24.6
I-pentanol 24.9

But, each alcohol has virtually the same surface
tension (y) and adsorption isotherm (h)...



The difference is related to the molar volume
of the condensed phase...

R.T
P =— ln( P j
aplace V Psat

V (cm?’/mol)
Ethanol 58.7
1-butanol 91.2

I-pentanol 108.7




Capillary Force vs. Laplace Pressure
(Normalized for h and V)

| Ethanol
® Butanol
Pentanol
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What’s the big deal?

m Macroscopic view of capillary force due to Laplace
pressure inside the meniscus:

F

Capillary

=471Ry cos6

m As the contact size shrinks, assumptions that are
valid in the derivation for macroscopic contacts
break down:

MOILAR VOLUME

ISOTHERM

D. B. Asay and S. H. Kim, Langmuir (in press)



Nano-asperity friction
in alcohol vapor environment



Friction Load Curves

ReduCtIOﬂ ln FflCthﬂ Average Friction Force vs. Load
€ 0% W6% A 10% < 15% X 31% @® 62% + 87% =100%

m Reduction in E ﬁﬁ?@ﬁﬂ@//

Adhesion?
m Reduction in shear 3
strength? S
= Both? E

Applied Load (nN)

D. B. Asay and S. H. Kim

(manusctipt in preparation) Silicon AFM tip on Silicon (100) surface at Room Temp

speed 2 um/sec



Adsorbate Effect on Friction

Ethanol Friction vs Total Load
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Friction Coeff. vs. Vapor Pressure

¢ Ethanol m Butanol A Pentanol
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D. B. Asay and S. H. Kim (manuscript in preparation)



Nano-asperity wear behavior in
alcohol vapor environment



Single Asperity Wear

In humid air (RH = 75%)
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In 75% P /P n-Propanol vapor
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Asay, Dugger, Ohlhausen, Kim, [angmuir (1n press)



Macroscopic Scale
Observations

Linear wear tests in n-pentanol vapor
environments



n-Pentanol vapor environment

3mm SiO, Ball
0.1N load

~2 mm/sec
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Profilometry of wear track
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Asay, Dugger, Ohlhausen, Kim, Langmuir (1n press)



20% P /Psat n-Pentanol
ToF-SIMS Multivariate Image Analysis

Intensity
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Asay, Dugger, Ohlhausen, Kim, Langmuir (in press)



Growth of oligomeric film

ToF-SIMS Multivariate Analysis
Component 4 Integral Intensity vs. Cycles
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Is maintaining the vapor environment
important?
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Relevance to MEMS ?

«Sidewall Friction
Device

B 500 NN Load
*Oscillations at 100 Hz
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Relative Dynamic Run
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Dynamic run in 95% P /Ps? pentanol vapor
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Conclusions



In-situ Vapor phase lubrication

Alcohol adsorption provides
a self-replenishing molecular
thick lubricant layer

0% P/Psat
m 20% P/Psat
o 95% P/Psat

Alcohol adsorption reduces

Friction at all length scales NO Device

Failure
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Wear within the contact is
dramatically reduced at all 10 102 10° 10* 10° 10° 10”7
length scales Cycles

MEMS failure is prevented
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