Sandia
National
Laboratories

Exceptional

service
in the
national

interest

SAND2014-4837C

Towards a Coupled Multiphysics Model of
Molten Salt Battery Mechanics

Scott A. Roberts, Kevin N. Long, Jonathan R. Clausen,
Mario J. Martinez, Edward S. Piekos, and Anne M. Grillet

Engineering Sciences Center
Sandia National Laboratories, Albuquerque, NM
sarober@sandia.gov

Session 28: Molten Salt Batteries (Primary & Secondary)
I, 46t Power Sources Conference, Orlando, FL

June 11, 2014

4 % U.S. DEPARTMENT OF R J a v
ENERGY #ViA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

UNCLASSIFIED — SAND2014-XXXXC



mailto:sarober@sandia.gov

Sandia

Physical mechanisms in molten salt battery activation A ) nationa

Laboratories

= Battery activation is a complicated, multi-step process
= Heat pellet burning
= Thermal diffusion

= Melting of the electrolyte
= Deformation of the separator Heat Pellet

= Flow of the electrolyte
o Y Cathode
=  Activation

= A true multi-physics problem

= Thermal

Heat Pellet

= Mechanical
=  Fluid
= Electrochemical

= Why performance models of thermal batteries?
= Predict activation times
= Optimize volume, insulation, manufacturing
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= Flow of the electrolyte

= Activation

= A true multi-physics problem
= Thermal
=  Mechanical
= Fluid
= Electrochemical

Heat Pellet

=  Why performance models of thermal batteries?
=  Predict activation times
= Optimize volume, insulation, manufacturing
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= Thermo-poro-mechanical coupling
= Thermal model
= Mechanical deformation model
= Thermo-mechanical demonstration
= Porous flow model

= Thermo-porous flow demonstration

Coupled thermo-poro-mechanical demonstration problem

= Thermo-electrochemical coupling
= Electrochemical model

= Demonstration problem




Models: Thermal Ah) N
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= Standard heat equation:

oT 5
W—av T+ Q

Source term Q applies to heat pellet, paper

= Level set tracking of burn fronts

= Constant propagation speed

Heat released over a narrow region near
burn-front position

D

o

o
T

= Presented at Power Sources 2012
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= Custom constitutive model

= (Capture the inelastic volumetric and
isochoric deformation of the MgO skeleton
before, during, and after activation

= |sotropic, thermal-elastic-plasticity
= Plasticity governs activation deformation
=  Kinematic split of deformations

F = FFPF!

= Rule of mixtures for phase decomposition
T - (T _ Tw/2)
T

Kirchoff stress: 7 = p1,.(T)dev(b’) +

X:

n
|
w

=  Conservation of momentum: Z 0 — Q

Strain Change after Melting
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= Coupled to porous-flow through effective stress: < — & + po
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= As the separator heats to above the electrolyte melting temperature, the
separator mechanically deforms in a process calibrated to experimental data.
= Current models capture the height change well, but not the diameter change
= Related to the lack of effective stress in current implementation
= Will be improved with thermo-poro-mechanical coupling
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Models: Porous flow h lﬁgﬁd.at'

= Electrolyte and gas form two immiscible phases upon melting

6
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= Coupling to other physics important! S 0s \/T/
= Required: R ¥ e - a
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SZ o SZ (pC7 d)? K o K(d) depend on wetting phase
saturation and electrode pore
structure
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Two-pressure porous-flow formulation enables stable solution of flow from the
separator to the cathode and anode.

Flow is “frozen” before activation by an artificially high viscosity. As the
electrolyte melts, the viscosity drops.
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=  Thermo-poro-mechanical single-cell simulation with full coupling:
= Heat pellet burn
= Two-phase porous flow upon activation
= Separator deformation upon activation
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= Reactions, especially for the cathode, are stoichiometrically complicated
Cathode :FeSy < LizFeaSs & Lig i« Fe144So 4+ Fej—yS < LigFeSs < LisS + Fe
Anode :L113814 = Li7Si4 = 48Si

= Cantera’s “Electrode Object” deploys multiple sub-grid models

= Infinite capacity

=  Multi-plateau Shrinking Core Model
=  Multiple plateaus can

= Newman reaction extend react simultaneously
= Finite capacity = Diffusional losses with
transport

= (Cantera’s thermodynamics all temperature-dependent

=  Primary electrochemical coupling is the temperature ﬁ
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Demonstration: Thermo-electrochemical coupling ) e
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= Voltage responds to temperature and current o
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= Spatial temperature variations
affect local potentials and
current densities
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= “Intelligent” coupling of physics can provide significantly higher-fidelity models,

with potentially only modest performance penalties. SERimE e
= Future investigation of additional couplings: - . -
= Material properties for all physics affected by: 6,, oy F )
= Mechanical deformation (change in solid fraction) - A Eém
= Saturation (change in liquid fraction) -
= Eventually couple electrochemistry
to the thermo-poro-mechanics .. Anode .. Separator .. Cathode
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Free Energy Kinematic Split of the Deformation
Densi% Gradient: Thermal, Elastic, and Plastic
R
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Cold/Hot State Phase
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