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Physical mechanisms in molten salt battery activation

 Battery activation is a complicated, multi-step process

 Heat pellet burning

 Thermal diffusion

 Melting of the electrolyte

 Deformation of the separator

 Flow of the electrolyte

 Activation

 A true multi-physics problem

 Thermal

 Mechanical

 Fluid

 Electrochemical

 Why performance models of thermal batteries?

 Predict activation times

 Optimize volume, insulation, manufacturing
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Physical models and couplings:  Current
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Physical models and couplings:  Obvious 
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Physical models and couplings:  Everything
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Physical models and couplings:  Ideal
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Models and demonstrations

 Thermo-poro-mechanical coupling

 Thermal model

 Mechanical deformation model

 Thermo-mechanical demonstration

 Porous flow model

 Thermo-porous flow demonstration

 Coupled thermo-poro-mechanical demonstration problem

 Thermo-electrochemical coupling

 Electrochemical model

 Demonstration problem
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Models:  Thermal

 Standard heat equation:

 Source term Q applies to heat pellet, paper

 Level set tracking of burn fronts

 Constant propagation speed

 Heat released over a narrow region near 
burn-front position

 Presented at Power Sources 2012

 Paper 30-2
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Model:  Mechanical deformation

 Custom constitutive model

 Capture the inelastic volumetric and
isochoric deformation of the MgO skeleton
before, during, and after activation

 Isotropic, thermal-elastic-plasticity

 Plasticity governs activation deformation

 Kinematic split of deformations

 Rule of mixtures for phase decomposition

 Kirchoff stress:

 Conservation of momentum:

 Coupled to porous-flow through effective stress:
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Demonstration:  Themo-mechanical deformation

 As the separator heats to above the electrolyte melting temperature, the 
separator mechanically deforms in a process calibrated to experimental data.

 Current models capture the height change well, but not the diameter change

 Related to the lack of effective stress in current implementation

 Will be improved with thermo-poro-mechanical coupling
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Models:  Porous flow

 Electrolyte and gas form two immiscible phases upon melting

 Saturation and capillary pressure related to 
DOFs (wetting and non-wetting pressures)
through model relations

 Coupling to other physics important!

 Required:

 Optional?:
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Capillary pressure (top) and
relative permeability (bottom)
depend on wetting phase
saturation and electrode pore
structure



Demonstration: Thermo-porous flow

 Two-pressure porous-flow formulation enables stable solution of flow from the 
separator to the cathode and anode.

 Flow is “frozen” before activation by an artificially high viscosity.  As the 
electrolyte melts, the viscosity drops.
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Demonstration: Thermo-poro-mechanical coupling

 Thermo-poro-mechanical single-cell simulation with full coupling:

 Heat pellet burn

 Two-phase porous flow upon activation

 Separator deformation upon activation
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Models:  Electrochemistry

 Reactions, especially for the cathode, are stoichiometrically complicated

 Cantera’s “Electrode Object” deploys multiple sub-grid models

 Infinite capacity

 Multi-plateau

 Newman reaction extend

 Finite capacity

 Primary electrochemical coupling is the temperature

 Cantera’s thermodynamics all temperature-dependent

 Future:  Use deformed geometry to affect porosity
in electrochemical calculations
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Shrinking Core Model

 Multiple plateaus can 
react simultaneously

 Diffusional losses with 
transport



Demonstration: Thermo-electrochemical coupling

 Voltage responds to temperature and current

 Spatial temperature variations 
affect local potentials and 
current densities
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Summary

 “Intelligent” coupling of physics can provide significantly higher-fidelity models, 
with potentially only modest performance penalties.

 Future investigation of additional couplings:

 Material properties for all physics affected by:

 Mechanical deformation (change in solid fraction)

 Saturation (change in liquid fraction)

 Eventually couple electrochemistry 
to the thermo-poro-mechanics
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BACKUP
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Thermal-Mechanical Behavior of the Solid Skeleton

Free Energy 
Density

Isochoric (Radial) Yield

Plastic Flow Rules

Kirchoff Stress

Kinematic Split of the Deformation 
Gradient: Thermal, Elastic, and Plastic 
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Volumetric Yield

Cold/Hot State Phase 
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Net Yield Surface is the Phase 
Volume Fraction Weighted Sum


