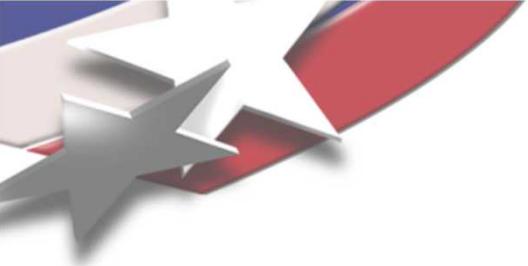


A Comparison of Markov Models and the Ensemble Kalman Filter for Estimation of Sorption Rates

**AGU Fall Meeting,
San Francisco, CA
December 11, 2007**

**Eric Vugrin, Sean McKenna,
and Kay Vugrin
Sandia National Laboratories**

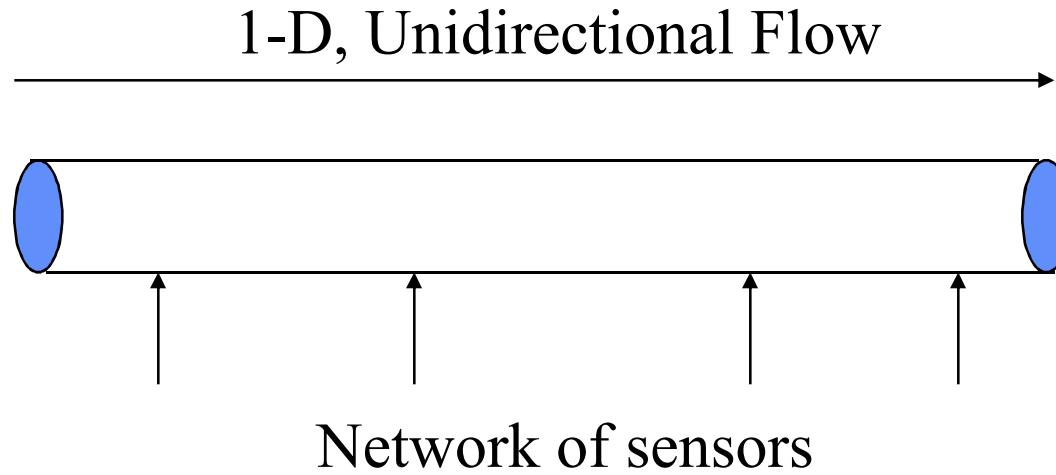
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.



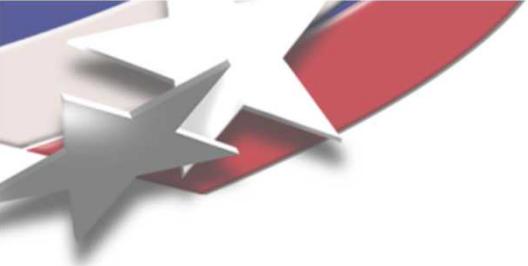
Outline

- Set Up
- Particle Tracking Model
- Prediction of de/sorption rates
- Application of the EnKF
- Results

Physical Setup

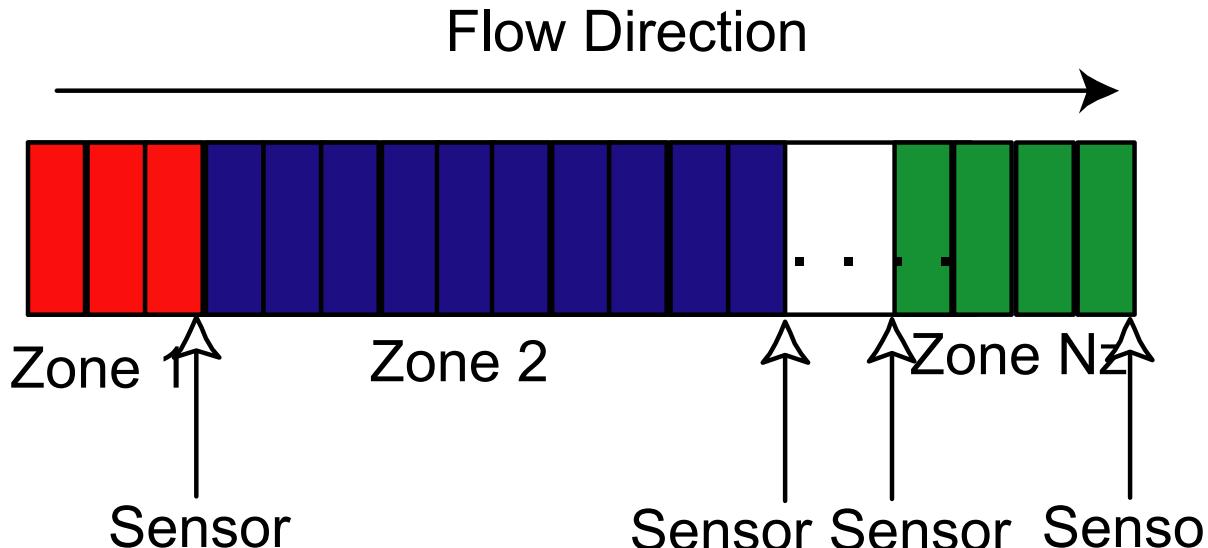


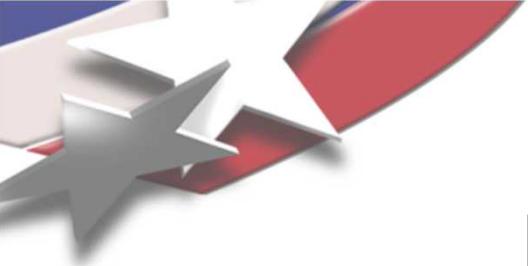
- Setup
 - Streamline with spatially varying de/sorption rates
 - Network of sensors to measure concentration
- Goal: using measured concentration data from sensors for an injected tracer, identify the de/sorption rates in real time



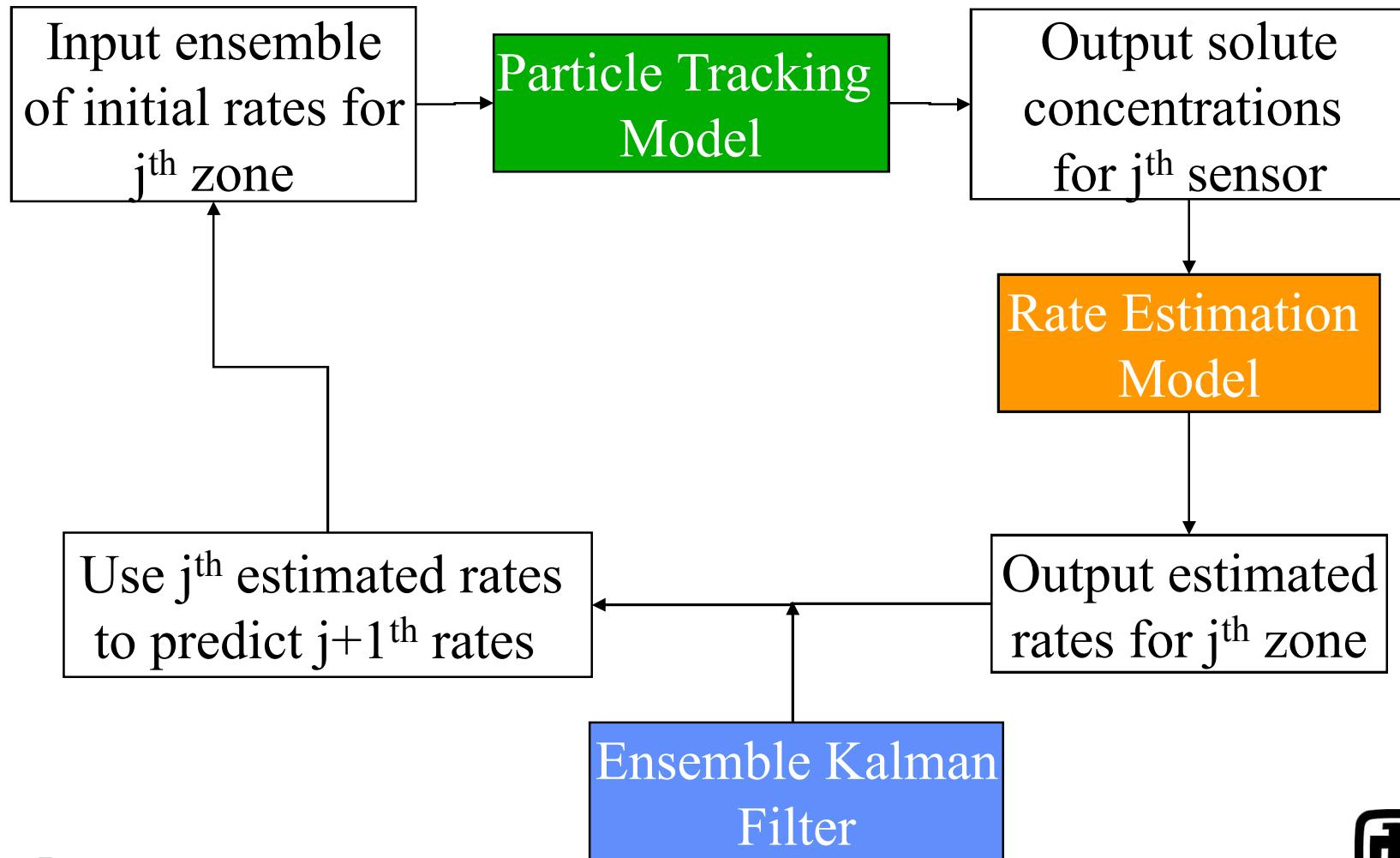
Modeling Set Up

- The streamline is divided into N_z zones
- Each zone is divided into subintervals of uniform length $\Delta x = v\Delta t$
- There is a sensor at the end of each zone
- De/sorption rates are constant in each zone and with respect to time
- At $t=0$, all particles are injected into the inlet of Zone 1





Rate Estimation Process



Particle Tracking Model: Probabilities

- Mishra et al. developed a Markov model that used constant de/sorption rates to define probabilities that particles transition between sorbed and aqueous phases
- Some key probabilities:
 - Particle in aqueous phase stays in aqueous phase for 1 time step:

$$\hat{p} = 1 - k_f \Delta t$$

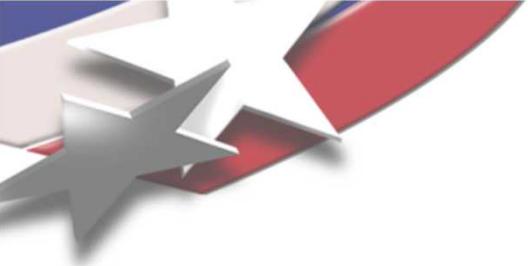
- Sorbed particle transfers to aqueous phase for 1 time step:

$$\tilde{p} = k_r \Delta t$$

- These probabilities form foundation of the particle tracking model

Particle Tracking Model: De/sorption Process

- Phase (aqueous or sorbed) determined at the beginning of each time step
- Particle in solution travels a distance of $\Delta x = v \Delta t$ in one time step
- Assume a well-mixed solution so that dispersivity is not an issue
- Implementation in code is a Monte Carlo simulation:
 - A “large” number of particles are tracked
 - Randomly sampled numbers are compared with probabilities to determine phase (and location) of each particle



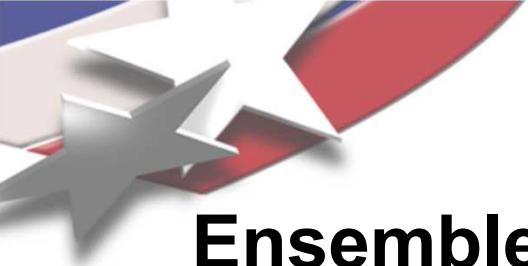
Rate Estimation Model

- Normalized concentrations are “inverted” to estimate rates
- Example: Assume Zone 1 has 3 subintervals
 - Probability that a particle reaches 1st sensor in 3 time steps is

$$[\hat{p}(1)]^3 = [1 - k_f(1)\Delta t]^3$$

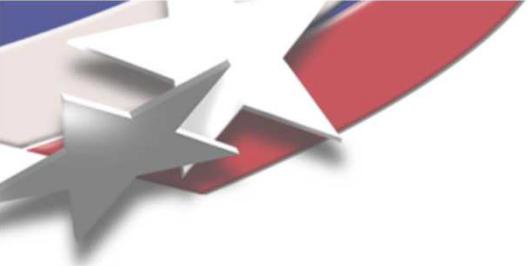
- Particle must always remain in aqueous phase
- Therefore,

$$\begin{aligned} C_1(3\Delta t) &\approx [\hat{p}(1)]^3 = [1 - k_f(1)\Delta t]^3 \\ \Rightarrow k_f(1) &\approx \Delta t^{-1} \left(1 - \sqrt[3]{C_1(4\Delta t)} \right) \end{aligned}$$



Ensemble Kalman Filter (EnKF) Application

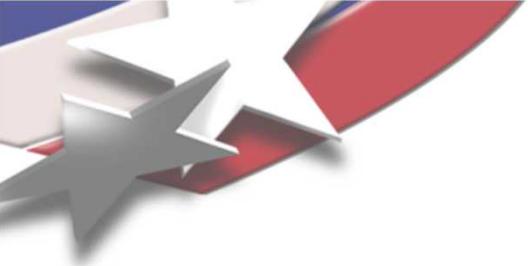
- Kalman Filter (KF) is predictor-corrector technique
 - “State” is predicted by linear model, and KF uses observation data and system statistics to “correct” state estimation
- EnKF is popular technique for non-linear applications
- For our application,
 - State = rates + concentrations
 - Predictor= Particle tracking model + rate prediction model
 - Observations = concentrations calculated with particle tracking code and true rates



Markov Model+EnKF

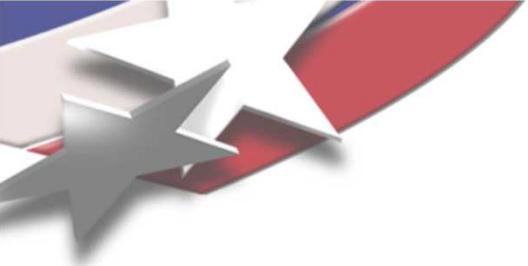
- Create ensemble of rates by perturbing “true rates”
- For each ensemble member
 1. Run particle tracking model based upon previously defined probabilities to get concentrations at j^{th} sensor
 2. Use rate prediction model to estimate j^{th} rates
 3. **Kalman Filter Update**
 4. Re-run particle tracking code with new estimates of j^{th} rates to get concentrations at $(j+1)^{\text{th}}$ zone
 5. Repeat steps 2-4 until all rates have been estimated

Final rate estimates for each zone are calculated by averaging rates over all ensemble members



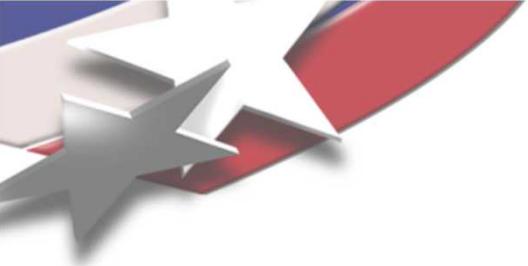
Test Case: True Rates

Zone	Boundary (m)	True k_f (1/day)	True k_r (1/day)	True k_d
1	0.0-10	0.005	0.005	1
2	10-15	0.005	0.000005	10^3
3	15-30	0.001	0.009	0.11
4	30-45	0.009	0.001	9.0
5	45-50	0.001	0.0001	10



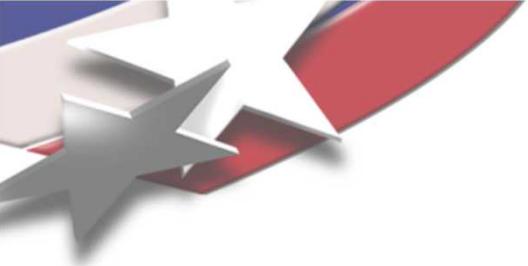
Creating the Ensemble

- Ensemble rate = true rate $\times (1+p)$ where p is randomly sample from $U[min,max]$
- Two ensembles created
 - $U[min,max] = U[-0.4,0.4]$
 - Average perturbation is zero
 - $U[min,max] = U[0,0.8]$
 - Average perturbation is not 0 so there is a “bias”



Results

- Without bias,
 - With large enough ensembles, both approaches estimated sorption rates fairly well (< 5% error)
 - Desorption rates were not as accurately estimated as well since they generally had less impact on concentrations and they rely on accurate estimation of sorption rates
 - LSEs were comparable for both methods
 - Addition of EnKF does not result in better rate estimates that justify additional computational cost



Results

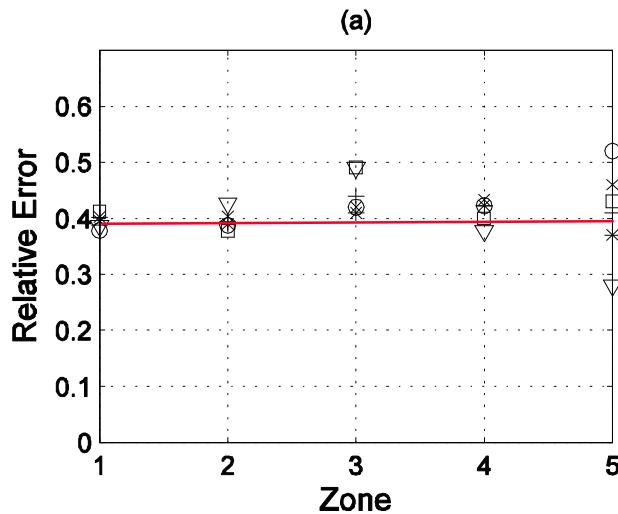
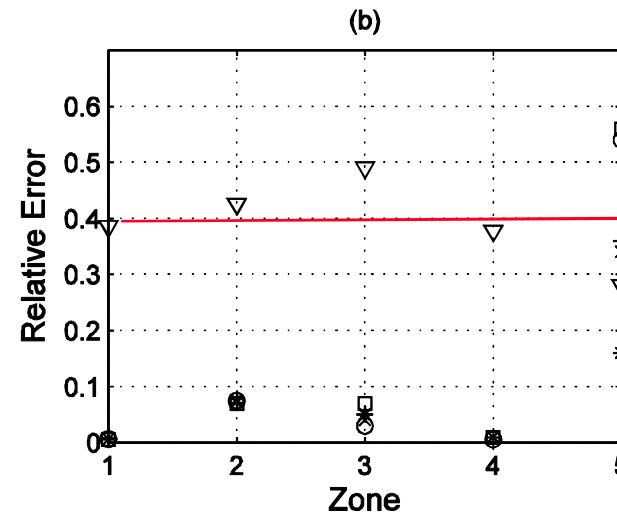
- With bias,
 - Markov estimates of sorption rates resulted in REs that converged to mean perturbation
 - Markov estimates of desorption rates resulted in much scatter
 - Addition of EnKF resulted in rejection of “bias” and more accurate estimates of forward rates
 - Addition of EnKF decreased LSE by two orders of magnitude

Results with Bias

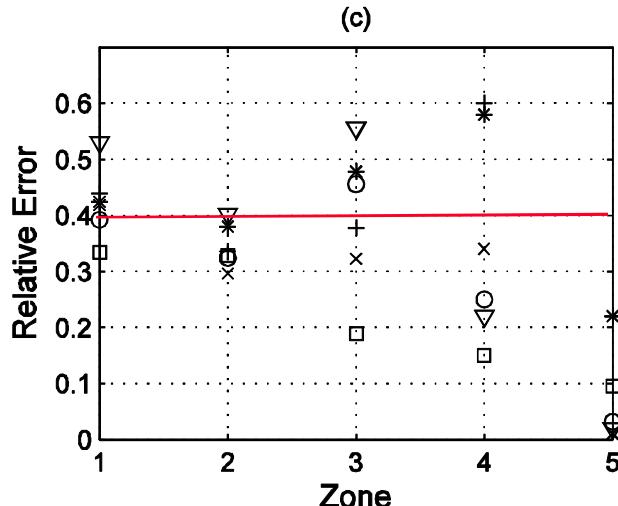
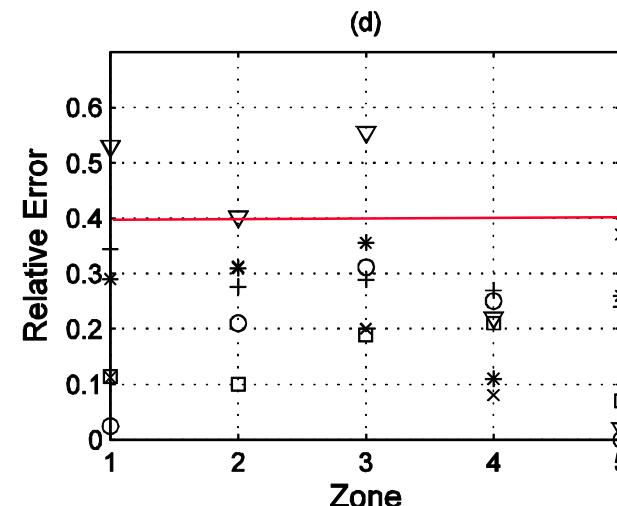
W/O EnKF

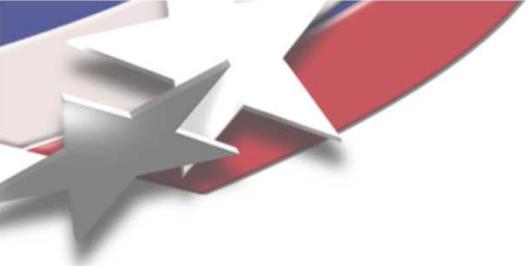
W/EnKF

Sorption



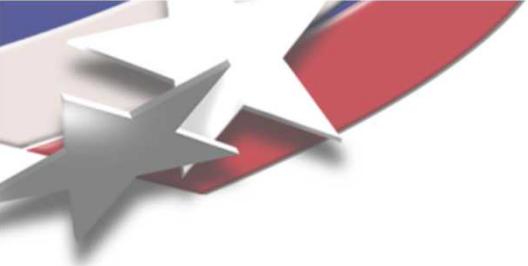
De-sorption





Results: LSE's with Bias

Ensemble Size	Markov	Markov+EKF
10	5.12e-2	2.96e-4
25	5.20e-2	2.06e-4
50	4.79e-2	1.57e-4
75	5.11e-2	2.05e-4
100	4.97e-2	2.71e-4
150	5.07e-2	2.39e-4



Questions?