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Traditional Rigid Reflectors

Hubble Space 
Telescope, NASA, 2002.

Shape-controlled Reflectors

• Thin, light.

• Compactly deployed.

• Integrated surface error 
correction.
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Smart Laminate with Moment Actuators
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Thin, Square, Membrane with 
Corner Supports

• Natural actuation into paraboloid, 

• Flexibility, 

• Large deflections.

Bimorph Action

• PVDF layers have opposing poling 
directions.

• Positive field induces simultaneous 
expansion (top) and contraction 
(bottom).
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Previous Model
• Sumali, Massad, et alia, 2004-2005.
• Corner supports:  sliding corners (out-of-plane constraint only).
• Based on Kirchhoff theory:  

– Describes bending action only;
– Neglects in-plane membrane effects.

• Formulation facilitates inversion (shape control).
• Observations:  

– uniformly circular contours; 
– linear rise in peak deflection with increasing uniform actuation voltage.

Deflection Contours Peak Deflection vs. Uniform Voltage
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Preliminary Measurements
• Fabricated corner-supported laminate with single electrode.  
• Electronic speckle pattern interferometry (ESPI) measures out-of-plane

deflection field.
• Corner supports: fixed corners to suppress vibrations and facilitate 

repeatable measurements.
• Observations:  

– squared contours become circular away from boundary; 
– nonlinear rise in peak deflection with increasing uniform actuation 

voltage.
Deflection Contours Peak Deflection vs. Uniform Voltage

Linear Rise 
not Observed
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Membrane Deflections

• Desired and measured deflections  250 µm.

• Typical membrane thicknesses 100 - 250 µm. 

maxw

toth

• Structural severity of membrane 
deflections gauged by ratio 

Peak Deflection  wmax

Total Membrane Thickness  htot
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Large deflection theory of membranes must be used to 
accurately model laminate deflections.
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Small Deflections

• Negligible straining of middle surface.

• Bending is dominant.

• Kirchhoff linear theory adequate.
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Large Deflections

• Measurable straining of middle surface.

• Membrane deformation  bending.

• Nonlinear geometry changes and in-plane 
deformation.
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Nonlinear (Large) Deflection Model

• Develop nonlinear model using framework of 
present linear, sliding-corner model.

• Predict large membrane deflections.

• Treat fixed corners.

• Preserve current model formulation as mapping:

Critical: formulate model to be suitable for 
deflection control.

Output
Deflection

Input
Voltages
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Energy-based Approach

Goal:  find energy-minimizing deflection given voltage array V.

Total
Strain Energy

Deflection 
Energy

Actuation 
Energy
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Determine strain energy:
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Deflection Energy
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• Energy includes Bending, Membrane, Linear-coupled, 
Nonlinear-coupled, and Nonlinear components.

Previous Model
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Actuation Energy

Integrate energy expression thru laminate thickness:
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Satisfy 
vanishing strain 
at edges.

Satisfies zero 
displacement at 
corners.

Assume expansions for tri-axial deformations:

Truncate sums and simplify energy expression in terms of expansions:

Energy Expansion
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Energy Minimization

Find energy-minimizing 
expansion coefficients.

Find energy-minimizing 
deformation.

Minimum conditions:

Solve nonlinear system for expansion coefficients:

  0 VcaaG wvu R,,

• Inverse map requires knowledge of in-plane deformation.

• Typically out-of-plane (w(x,y)) known/specified (e.g., ESPI, error 
surface), in-plane unknown.

0 U
wc0 U

va0 U
ua

Gradient Function

G
couples expansion coefficients nonlinearly

Resulting Map:

Input:  V Output: u(x,y), v(x,y), w(x,y)

Must Decouple In-plane Deformations
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In-plane Strain De-coupling

• Minimum conditions yield linear dependence on au, av.

• In-plane coefficients explicitly cast in terms of out-of-plane 
coefficients.
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Recast nonlinear system:

Resulting Map:

Input:  V Output: w(x,y)

• Inverse map requires only out-of-plane deformation.

• Deflection control feasible.

Nonlinear Gradient Function

Gnl
nonlinear component of decoupled gradient

Decoupled Energy Hessian

H
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Model Results

• Deflection contours show squaring effects.

• Nonlinear rise in peak deflection predicted.

• Source:  nonlinear geometry changes and membrane 
forces due to large deflections and pinned corners. 

Model Deflection Contours Peak Deflection vs. Uniform VoltageMeasured Deflection Contours
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Concluding Remarks

Summary
– Model computes large membrane deflections of active laminate 

given distribution of actuation voltages. 

– Model accommodates clamped corner supports, membrane 
strains, and geometric nonlinearities.

– Formulation maps voltage input to deflection output, suitable for 
shape control.

– Model agrees qualitatively with measured deflections of an active 
laminate.

Future and Ongoing Considerations
– Validate model with coordinated experiments.

– Analyze convexity to guarantee admissible numerical solutions.

– Implement efficient inverse model for shape control.

– Improve computational efficiency.

– Integrate model with measurement system to control shape of 
fabricated laminate.


