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Abstract

The capacity to maintain stability in a system relies on the components which make up the system. This 

study explores the relationship between component-level resilience and system-level resilience. The 

study aims to identify policies which foster system-level resilience in situations where existing incentives 

might undermine it. We use an abstract model of interacting specialized resource users and producers, 

which can be parameterized to represent specific real systems. We want to understand which features 

of a system, such as input resource stockpiles, demonstrate the efficacy of system-level resilience 

policies. Systems are subject to perturbations of varying intensity and frequency. Our study focuses on 

creating a simplified economy which imposes an inventory carrying cost to incentivize smaller 

inventories. Our study examines how components with varying inventory levels compete in 

environments subject to periods of resource scarcity. The results show that policies requiring larger 

inventories foster higher component-level resilience but do not foster higher system-level resilience.

Inventory carrying costs reduce production efficiency as inventory sizes increase. JIT inventory strategies 

improve production efficiency but do not afford any buffer against future uncertainty of resource 

availability.

Introduction

Resilience is the ability of a system to recover from shocks. Economic turmoil, political instability, and 

natural disasters are examples of shocks which can stress or destabilize a system. Uncertainty in the 

future availability of critical resources is a concern to policy makers [Simangunsong 2012, Brown and Lall 

2006]. Understanding and fostering the resilience of key systems, such as infrastructures, is a key public 

policy goal of Presidential Policy Directive 21 (PPD-21) [Obama 2013]. Resilience can be measured using 

the movement of a system indicator, such as the flow of a key resource through the system [Vugrin et.

al. 2014]. The resilience of a system is an emergent property of the resilience of its components because 

system resilience depends on how the components interact and not simply on their individual resilience. 

Policies which optimize component resilience may not optimize system resilience, and vice versa.

We explore this trade-off using a simple model system containing two kinds of interdependent entities. 

Each kind consumes the distinct resource produced by the other. Entities keep inventories of their input 

and output resource which can be used to buffer periods of scarcity. For one kind of entity, individual 

members keep different input inventory levels. Larger inventories are costlier to maintain but provide a 

better buffer against supply disruptions. Competition among individual entities forces a tradeoff 

between inventory cost and benefit. The outcome of this competition is determined by the frequency of 

random shocks arriving from the environment.
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Agent-based models (ABMs) are an effective means of modeling, understanding, and measuring 

resilience of complex systems [Datta et. al. 2007, Jennings 2000, Sandholm 1999]. ABMs allow for the 

simulation of actions and interactions among autonomous agents and their effects on the system as a 

whole. Agents have adaptive processes and interact with other agents in the system resulting in 

behavior that is complex and difficult to anticipate. This modeling methodology lends itself well to 

understanding how complex adaptive systems work, the interdependencies of system components, and 

how adaptive entities respond to endogenous and exogenous changes [Brown et. al. 2004, citations].

We developed a hybrid model, using system dynamics and agent-based modeling, to represent 

production and consumption sectors, resource flows, and market exchanges among interacting 

specialists (entities) in a system. All entities in the system produce and consume resources and trade 

those resources via a double auction market mechanism.

We conducted a study which explores the relationship between system-level resilience and component-

level resilience. The aim of the study is to identify policies that foster system-level resilience in situations 

where individual incentives might undermine it. We want to understand what features of a system, such 

as input resource levels, determine the comparative effectiveness of system-level resilience policies. In 

this study, system-level resilience is defined as the ability for the system to maintain critical resource 

flows while the system is subjected to disruptions in resource availability [Arrow et al., 1995, 

Christopher and Peck 2004]. Component-level resilience is defined as the ability for agents in a system 

to maintain a sufficient local resource buffer to survive periods of resource scarcity. This study utilized 

the Exchange Model developed at Sandia National Laboratories to investigate complex adaptive systems 

(CAS) [Beyeler et. al. 2011]. This model provides a framework to abstractly represent a system in which 

interacting specialists (entities) produce and consume resources that flow among entities via continuous 

markets.

Model Description

The Exchange Model (ExM) combines system dynamics and agent-based modeling to represent 

production and consumption sectors, resource flows and market exchanges among interacting 

specialists (entities) in a system (see Figure 1). All entities have a homeostatic process which maintains 

‘health’ via the consumption of resources. The production of resources is driven by the consumption of 

resources. Entities store both the resources needed for consumption and production and control those 

resource levels through interactions with markets. Markets facilitate the exchange of resources by using 

a double auction algorithm to match bids and offers. Each market manages the exchange of a single 

resource. The price of a proposal (bid or offer) is reflexive and represents the relative scarcity or 

abundance experienced by the entity creating the proposal. The environment determines the availability 

of resources that entities require for survival. Entities use environmental signals to determine the 

amount of resources to consume and produce.



Figure 1 - Illustration of an entity and how entities interact with the system

Entity

Entities maintain their health via a homeostatic process involving the consumption of specific resources. 

Healthy entities can produce other kinds of resources. Parameters of thefunctions governing 

consumption, production, and health can be varied to reflect various types of real systems. An entity’s

behavior is reflexive to its governing equations and control processes. Entities exchange resources 

among one another via a double auction market mechanism. An entity’s health will decline if the entity 

is unable to obtain the input resources needed for consumption from the market. There are two primary 

reasons an entity would not be able to obtain the resources it needs from the market. First, the resource 

is not available in the market. This can be due to resource scarcity or the unavailability of the entity 

producing the resource. Second, the entity is not able to sell its outputs and generate the money it 

needs to purchase its inputs.

The environment determines whether entities can sell produced resources to acquire the necessary 

resource inputs on sustainable terms. The environment is made up of other kinds of entities with 

complementary requirements. The flow of resources in an environment can be disrupted by shocks to 

resources stores in some parts of the system resonating through the system via these dependencies. 

Entities maintain stores of input and output resources to buffer against uncertainty of resource 

availability. 

Production Efficiency

One of an entity’s governing state variables describes the function of health on potential production 

[Beyeler et. al. 2011]. When health exceeds its nominal value of 1, production can increase. Conversely 

as an entity’s health declines, due to a scarcity of input resources, the entity can find a new operating 

equilibrium by running leaner at a lower health value. If the stress of scarcity becomes too great, then 

the entity’s health value and production rate will decline rapidly. 

Simple Model



For the purpose of this study, ExM is configured with two types of entities: A Producer, B Producer; and 

two types of resources: A, B (see Figure 2). The parameters for an entity type can be constant or have a 

probability distribution. A Producer produces 1 unit of resource (A) for each 1 unit of resource (B)

consumed. B Producer produces 1 unit of resource (B) for each 1 unit of resource (A) consumed. We use 

this simple structure to explore the relationship between component-level resilience and system-level 

resilience by focusing on B Producers. We allow B Producers’ input buffers to differ from one another, 

and use their health to indicate the component-level effect of their “decision”. System-level 

performance is measured by the total production of B by all B producers. Our study focuses on 

component level and system level resilience. We are going to consider the health of B Producers to 

quantify component level resilience and the availability of resource B as a quantification of the system 

robustness to various strategies.

Figure 2 - Illustration of the Simple Model

To study how different configurations of B Producer and environments affect the production of our key 

resource (B), we configure the B Producer’s health to be highly sensitive to its consumption of A. We 

disrupt the availability of resource A and measure how the scarcity of resource (A) affects the health of B 

Producers and the availability of resource (B). We will configure A Producers to ensure a constant 

system demand of the resource (B). B Producers who are not able to obtain the amount of inputs 

required for consumption either via the market or internal stores will decline in health until they are no 

longer viable. They are then replaced by another B Producer having a different (randomly chosen) input 

resource buffer size. In this way the population of B Producers evolves to withstand the particular 

frequency and intensity of shortfalls in resource (A) that define the environment.

We are comparing two different strategies for B Producers: adaptation and maximum inventory. The 

adaptation strategy allows for B Producers to be realized with random local inventory levels ranging 

from small to very large. The system in which B Producers utilize an adaptation strategy will have a 

population of B Producers with various inventory levels. The system in which B Producers utilize a 

maximum inventory strategy will have large inventory levels. A large inventory ensures a high degree of 

component-level resilience for B Producers.



Adaptation

The adaptation strategy requires B Producers to adapt to their environment via a replacement process. 

An entity that is not viable in the current environment will be replaced by one with different 

parameters. The parameters we are interested in varying are the parameters which govern an entity’s 

inventory levels. We are varying the parameter tcstore, which controls how much, in terms of time, 

input resource will be stored. Entities with a small tcstore will have a just-in-time inventory, or minimum 

inventory, management strategy. Entities with a larger tcstore will have a maximum inventory strategy.

Maximum Inventory

The maximum inventory strategy requires B Producers to maintain a very large inventory compared to 

their consumption rate. All B Producers in this strategy will have large tcstore values. This strategy will 

model environments where inventory levels are often large due to either regulation or environmental 

conditions. Many critical industries, such as energy production, are required to have large inventories of 

key resources in an effort to provide higher system resilience. 

Study

The strategic resource being monitored is the output of the B Producer entities, resource B. There is an 

inventory cost for B Producers on their input resource inventories, which incentivizes smaller 

inventories, but the environment is subject to periods of scarcity of resource (A), which incentivizes B 

Producer entities to have larger inventories. The goal is to compare the two inventory management 

strategies discussed earlier, just in time and maximum inventory, to determine which strategy conveys 

the highest component-level resilience and which strategy conveys the highest system-level resilience.

Inventory Carrying Cost

We have configured ExM to impose an inventory carrying cost to B Producers. Inventory carrying cost is 

modeled as a loss rate proportional to the inventory level. This abstractly represents the carrying costs 

for maintaining an inventory, such as physical storage, inventory taxes, and expiration of goods. The 

higher an entity’s tcstore the higher the cost that entity pays for having a larger inventory. The inventory 

carrying cost produces selective pressures for the population of entities to have smaller tcstores.

Scarcity

In order to study the relationship between component-level resilience and system-level resilience, we 

need to create an environment in which B Producers experience scarcity. We script a disruption in the 

availability of resource A from A Producers during the simulation. The disruption of resource (A) causes 

B Producers to rely on their local inventories for consumption of resource (A). When the input resource 

for B Producers is scarce, there is selective pressure on B Producers to have larger tcstores. We model 

this scarcity by configuring a perturbation to stop A Producers’ production of A at simulation time

10,000 through simulation time 11,000.Time, as defined in our model, is unitless (without a specific 

measure); we use it as a way to compare changes in state.



Simulation

We ran each simulation for a total simulation time of 20,000. A disruption was scripted at simulation 

time 10,000 which completely reduced the availability of resource (A); this scarcity lasted until 

simulation time 11,000. We imposed an inventory carrying cost of 2% per unit time. For each 

environment, we ran two simulations. One in which B Producers used the adaption inventory strategy,

(those entities’ inventory size was randomly selected from a distribution of small to large tcstore values)

and one in which B Producer used the maximum inventory strategy (those entities only had large 

inventory sizes).

Each simulation has an initial population of 10 A Producers and 10 B Producers. Each entity consumes 1

input resource and produces 1 output resource. The nominal amount of each input and output resource 

is 10. A Producers do not have their health influenced by consumption of resource (B) and always 

maintain their production of resource (A). B Producers’ health is highly sensitive to their consumption of 

resource A. During the simulation, B Producers which are not viable are replaced with new realizations 

from the B Producer factory’s parameter descriptions. This replacement allows us to model adaptation 

in the selection of tcstore values for various environments.

Table 1 describes the two tcstore value ranges configured for each environment. 

Table 1: Tcstore values ranges

Strategy
Tcstore 
Min

Tcstore 
Max

Adaption 0.2 5.0

Maximum 
Inventory 4.0 5.0

For each simulation, we quantify component-level resilience and system-level resilience. Component-

level resilience can be quantified by measuring the average health change over time of the B Producers 

after the disruption. System-level resilience can be quantified by measuring the change in volume of 

resource (B) flowing through the market, since there is a constant demand for the key resource (B).

Analysis

Time Series

Table 2 describes the periods and simulation times we will use to discuss the results of our analysis.

Table 2 Periods and Simulation Times

Period Time

Pre-disruption 1,000 - 10,000

Disruption 10,000 - 11,000

Recovery 11,000-20,000



Figure 3 is a time series plot of the B Producer’s health trajectories overtime. The results are 

differentiated by the two strategies under consideration. The upper plot illustrates the simulation where 

entities are realized with a random tcstore. The lower plot illustrates the simulation where entities are 

realized with only a large tcstore. The color of the entities is graduated based on their inventory size. 

The darkest entities have the largest inventories. 

Figure 3 - B Producer Entities' Health over Time

The upper time series shows that in the pre-disruption period of the simulation entities with a smaller 

tcstore values have a higher health. This is intuitive due to the 2% carrying cost of holding inventory. 

Entities have to compete with one another for resources leading to less efficient entities having lower 

health values. Entities with larger tcstores are less efficient due to the higher costs associated with 

maintaining a larger inventory. In the beginning of the disruption period, entities with higher tcstores 

are healthier. The period of scarcity causes entities with the lowest tcstore to become unviable and they 

are replaced with new realizations. A period of recovery follows the period of scarcity where entities 

with larger tcstores are again less efficient and the larger tcstore entities are outcompeted by entities 

with smaller tcstores.

The lower time series shows that in the pre-disruption period of the simulation, all entities have similar 

health values due to the lack of diversity in the entities’ parameters. As the period of scarcity begins, the 

entities’ health values move together as they experience the scarcity of their input resource and rely on 

their local inventory levels to maintain their consumption of resource (A). 

Comparing the relative health trajectories of each strategy allows us to talk about the component-level 

resilience of the strategies. A strategy requiring a larger inventory size lends itself to the B Producers 



being able to withstand a period of scarcity more effectively than B Producers with smaller inventories; 

we can see this by noting that the health of B Producers in the lower time series plot have a gentler 

slope during the period of scarcity compared to B producers in the upper time-series plot. However, the 

additional inventory size leads to lower overall health of entities in the lower time-series plot than those 

in the upper time-series plot due to the carrying costs of a larger inventory. Also note that entities which

use an adaptive inventory policy have a faster recovery because those entities do not have to rebuild 

large inventories which were drawn down during the period of scarcity.

Figure 4 - Resource B Market Volume over Time

The upper plot, which illustrates the volume of resource being produced over time by the adaptive

strategy, shows that initially there is a dampened effect on the amount of resources being produced 

because of the sharp decline in health. After an initial decrease in the production of resource (B), we can 

see the recovery begin followed by a second decrease in the production of B. Finally, there is a slow gain 

in production of resource (B) as the entities recover from the period of scarcity. The double-dip recovery 

is attributed to the adaptation strategy by which failed entities are replaced with new entities. As the 

first recovery is underway, entities with smaller inventories are unable to compete with entities with 

larger inventories. This is due to the entities with larger values being healthier after the period of 

scarcity. The entities with the lowest tcstore values fail and new entities replace the ones that failed. 

The decline of an entity’s health leads to lower levels of production which causes the second dip in the 

recovery. Once the entities that have failed are replaced, the amount of resource (B) being produced 

steadily increases.



The lower plot, which illustrates the volume of resources being produced over time by the maximum-

inventory strategy, shows that during the period of disruption and early recovery there is an amplified 

effect on the amount of resources being produced considering the slight decline in health. The amplified 

effect on the decline in volume compared to the slight decline in health was puzzling at first. There were 

a couple of interactions in the model which caused this phenomenon. The carrying cost stressed entities 

in this strategy driving those entities to operate at higher production efficiencies to offset the cost of 

maintaining a large inventory. The higher production efficiency causes the entity to operate at a lower 

health value. These entities are operating at peak efficiency when the period of disruption begins and 

the shock is lessened by their buffer stocks but the result is the entities are driven to lower production 

efficiency.

Data

Table 3 shows the health over time for both strategies. The strategies with the highest health values are

highlighted. The nominal health value for entities is 1. These values are averages of individual health 

values of all B Producers for each strategy. Comparing the average heath values by strategy provides us 

with a comparative analysis of which strategy affords higher component-level resilience.

Table 3 Average Health over Time by Strategy

Time
Adaptation 

(h)
Maximum Inventory 

(h)

1000 0.9835 0.9662

2000 0.9767 0.9520

3000 0.9693 0.9427

4000 0.9620 0.9345

5000 0.9567 0.9278

6000 0.9532 0.9221

7000 0.9509 0.9174

8000 0.9491 0.9133

9000 0.9478 0.9097

10000 0.9466 0.9067

11000 0.8488 0.8597

12000 0.7212 0.7795

13000 0.6787 0.7487

14000 0.7057 0.7568

15000 0.7514 0.7744

16000 0.8086 0.7876

17000 0.8261 0.7964

18000 0.8482 0.8033

19000 0.8436 0.8083

20000 0.8167 0.8113



The adaptation strategy has the highest average health values in the pre-disruption period. This finding

is consistent with the efficiencies gained from some entities in the system having lower inventories in an 

environment where there is a 2% inventory carrying cost over time. This finding also explains why the 

standard deviation of health for B Producers is higher in the adaptive strategy during the pre-disruption 

period than the maximum inventory strategy. The adaptation strategy has lower health values than the 

maximum inventory strategy during the disruption and early recovery periods. This is due to the

adaptation processes by which entities that were not viable during the disruption die and are replaced 

with new realizations. This replication process is also the reason the for a more robust recovery than the 

maximum inventory strategy. The health of an entity influences its production and consumption rates. 

The adaptation strategy has entities with low health die after the disruption and they are replaced with 

entities with high health values. These new entities are able to produce more of resource A than entities 

with lower health values.

The maximum inventory strategy has the highest average health values in the disruption and early 

recovery periods. This is because these B Producers have larger inventories which buffer against the 

period of scarcity. 

Table 4: Market Volumes over Time by Strategy

Time Adaptation
Maximum 
Inventory

1000 8.0738 6.6701

2000 9.0412 7.8178

3000 9.5037 8.4819

4000 9.6563 8.8673

5000 9.6282 8.9882

6000 9.5929 9.0025

7000 9.5779 8.9955

8000 9.6035 9.0283

9000 9.5830 9.0620

10000 9.6036 9.0979

11000 5.7851 5.0655

12000 9.0904 5.9843

13000 9.7515 11.8962

14000 6.9173 8.5282

15000 6.5649 7.9997

16000 7.1437 8.2429

17000 7.4425 8.5685

18000 8.1145 8.6531

19000 8.7804 8.6792

20000 8.9354 8.6874



Table 4 shows the average market volumes over time by strategy for resource (B). The strategy with the 

highest volume is highlighted. The nominal volume for resource (B) is 10 units. The average volume of 

resource (B) is an average of the market volumes for all the simulations for a given strategy.

The adaptation strategy has the highest volume in the pre-disruption period. Since entities in this 

strategy can have lower inventory levels than in the maximum inventory strategy, they are more 

efficient due to the relatively lower costs of a smaller inventory. What was surprising was that the 

adaptation strategy has the highest volume in the disruption period. This was puzzling at first until we 

considered that the replacement of anemic entities with new entities provided a boost in production of 

resource (B). This phenomenon leads to an overshoot in production and the system has a second dip 

with reduced production of resource (A). In the late stages of recovery, as the memory of scarcity fades, 

the adaptation strategy becomes the highest producer of resource (B).

The maximum inventory strategy is designed to be resilient during periods of scarcity. This resilience 

causes the components to be less efficient in periods without scarcity. This strategy also causes B 

Producers to have a more severe drop in production of resource (B) during a disruption. As the entities 

experience scarcity, they utilize their local resource buffers to mitigate the loss of resources from the 

market. The experience of scarcity causes the entities to reduce consumption of the scarce resource (A)

causing a reduction in the production of resource B. For this same reason, the period of recovery is 

quicker compared to the adaptation strategy because production gradually returns to pre-disruption 

levels.

Conclusion

There is not a single strategy or policy which is most effective in fostering both high component-level 

resilience and high system-level resilience. There are tradeoffs to both waiting on adaption to select the 

most efficient components for a given environment and a policy of maximum inventory which buffers 

against uncertainty in future resource availability. The adaptation strategy fostered high system-level 

resilience, but had lower component-level resilience compared to the maximum inventory strategy 

which fostered high component-level resilience, but had lower system-level resilience.

The adaptation strategy can reduce the impact of carrying costs due to the selection of entities in the 

strategy having smaller inventories, which leads to more efficient production of resources. During the

resource shock, entities with larger inventories were healthier and able to use their local resource 

buffers to reduce the shock; entities with small inventories health declined and some failed and were 

replaced with new entities. The diversity of inventory sizes and replacement of failed entities produced 

lower component-level resilience and higher system-level resilience then the maximum inventory 

strategy. Adaptation is more efficient in systems where there is low cost of entry, low level of consumer 

visibility or where the components are not sensitive to consumer confidence. A system in which entities 

select their own strategies provides less component level resilience overall, but the system is more 

efficient and periods of scarcity are less severe because all entities do not experience scarcity in the 

same way and new entities emerge and help the system to recover.



A maximum inventory policy to buffer against uncertainty in future resource availability is very effective

at providing a high degree of component-level resilience. Larger inventories are an effective buffer 

against disruptions in resource availability. Where the maximum inventory did not do well was in its 

ability to maintain the production of a key resource to the system. The reason for this was that the 

stress of maintaining larger inventories drove entities in this strategy to a leaner, more efficient 

production rate in the pre-disruption period at the cost of lower health values for the individual entities. 

Once the disruption occurred, the scarcity combined with the previous system stress of the carrying 

costs on a large inventory caused a more severe drop in the production of the key resource than 

compared to the adaptation strategy.

In industries where there is a high consumer visibility and high customer confidence in the individual 

institution, then a high level of component-level resilience is necessary and would benefit from a policy 

requiring larger inventories. However in sectors where consumer confidence is on the availability of a 

resource and not an entity, then focusing on system-resilience through local adaptation would be a 

beneficial and cost effective policy.
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