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Abstract. An a posteriori error analysis of the spatial approximation is developed for the one- 
dimensional Arbitrarily High Order Transpori-Nodal method. Eke error estimator preserves the 
order of convergence of the method when the mesh size tends to zero with respect to the L’ norm. It is 
based on the difference between hvo discrete solutions that are+ available from the analysis. The 
proposed estimator is decomposed into error indicators to allow the quantification of local errors. 
Some test problems with isotropic scattering are solved to compare the behavior of the tme error to 
that of the estimated error. 
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1 INTRODUCTION 

This paper briefly overviews some recent advances in what regards nodal methods for the 

neutron transport equation. Numerical methods in neutronics are very specific, and,in general 

not familiar to the Computational Mechanics community. Care was taken to avoid 

technicalities, adapt the notation and remark features that could prove useful in other areas. 

High order nodal methods produce highly accurate solutions with high computational 

efficiency in one and multidimensional geometry problems. In particular, the simple form of 

the equations of the Arbitrarily High Order Transport-Nodal Method @HOT-N) proposed by 

Army’ makes these methods very attractive for practical purposes. The multidimensional 

AHOT-N method is developed by transversely averaging the transport equation and solving 

the 1D resulting equations. This motivated us to analyze the 1D AHOT-N method. 

The neutron transport equation, in lD, can be written as 

where (v is the vector of angular fluxes (an S, approximation is assumed), ,U the (diagonal) - = 
;uA 

matrix of director cosines, cr the total cross-section, 2 the scattering matrix and 4 the 

external source. Boundary conditions are given for each component yi at the left (x=0) or 

right (x=L) boundaries, depending on the sign of p;*(if positive at the left, if negative at the 

right). If we denote by L the differential operator (comprising boundary conditions) on the 

left-hand side of (1) and by S the scattering operator on the right, we arrive, formally, at 

Ly=Sy+q (2) 

To introduce the method we need to define a finite dimensional subspace v” of C,” (O,L), 

the latter being the space of N-tuples of functions in (04) with continuous derivatives up to 

order p. Let the domain [O.L] be partitioned into a finite number of non-overlapping cells 

{Ck ,k = I,..., K} and let F be defined as the subspace of C,“[O, L] such that each componegttis 
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a polynomial of degree < A in each C, No continuity is imposed at the cell interfaces for 

elements of v. The dimension of J is clearly NK(A + 1). 

Let I7 be the L’-orthogonal projection from C,” [0, ~1 onto F, namely 

(3) 
0 

For simplicity, .17g will alternatively be denoted by g” We are now in a position to introduce - - 

the AHOT-N method. Let @ = (ei) denote the approximate solution provided by the method; 

it is defined by 

L+7&+g]=s~+ij. - - 

By virtue of the remark made above, (; can also be viewed as the solution to 

(4) 

dP 
kf,W + G)&, = a,$,@, + &4 (5) 

with the boundary conditions mentioned before. Remarkably, Eq. 5 fully defines a numerical 

methodology which can be effectively implemented. Notice that the method keeps the 

differential operator unchanged, but the scattering operator and the source are projected onto a 

specific subspace in which the differential operator can be inverted exactly. This methodology, 

reminiscent of other methods in computational mechanics such as the “exact transport + 

projection” schemes, produces very accurate results as shown later. There exist analyses of 

similar approximations for some particularfied low-order representations of the angular flux”-‘. 

The a priori analysis of the General Order method approximation’ proved a priori error 

estimates of order h*+’ in the sup norm. In addition, they showed a superconvergence result at 

cell boundaries, order h’“*‘. Notice that an ermr of order hA” exceeds by one the best 

approximation obtainable with polynomials of degree A. This is so because @is not a 

polynomial, but instead the exact solution of Eq. 5, ifi which the right-hand side is a polynomial. 
.nr.r 

The final form of the method was originally derived by Azmy’, who developed a Weighted 

Diamond Difference Form for the multidimensional case making the method easier to use. From 
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the viewpoint of the error analysis, this method is classed within characteristic methods with 

exact rnoments4.5. We will not elaborate here on the implementation, referring to Azmy’ or 

&non&y6 for details. 

2 A POSTERIORI ERROR ESTIMATION 

One usually faces the problem of estimating the accuracy of the solution for a given, 

completed, computation. For this purpose, (I posteriori estimates are needed. Furthermore, a 

natural question is how to refine the approximation to get maximal accuracy gain with 

minimal computing cost. The answer can be obtained via focal a postetiori error indicators. 

Though rhe literature in a posm-iori error estimators is vast’.‘, applications in neutronics are 

scarce and apply only to the diftksion equatior?“‘. 

Let _E be the true error, _E = c-y , and let 1~ I* = c. g = zr, E f , the following bound can 

be proved6 

where h.o.t. stands for “higher order terms”. Equation (6) gives an upper bound for the error 

measured in L’ norm for a general scattering operator. Since its right hand side depends only 

on known quantities, it can be used to estimate the global error of the solution obtained with 

the ID, AHOT-N method. The estimator above has asymptotically the same order as the error, 

so that is does not overestimate the true error in what concerns order of convergence (the 

effectivity index does not tend to zero). It is known4 that /E/I‘- = O(h’+*). As 

11~ llL2 < fill-~ IjLm , it follows that the order of I]- IjL E z is also O(h”‘). Since (pi - li;) = O(h”+‘) 

and (gi - qi) = O(h”“), the estimator given by the square root of the right hand side of Eq. (6) 

is O(h”‘2), the same as the order of the error. 

Equation (6) estimates the global error, of interest is to decompose the estimator intof?$?l 

error indicators. These indicate where the approximation should be refined to improve global 
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accuracy at minimum expense. Let vik denote an error indicator for component i in cell C,. By 

direct inspection, qti can be defined as 

The estimator presented above is baaed on the difference between @ and g, two 

approximations calculated in the AHOT-N method that have different accuracy, as already 

discussed. This reminds of “hierurchic” error estimators in the finite elements terminology8. 

However, the proposed estimator is a “residuul-based” one, that is, it reduces to a suitable 

norm of the residual of the differential equation. To see this notice that from Eq. 5 we have 

where &((v) is the residual. Replacing Eq. (8) into Eq. (7) we see that the error indicator is in 

fact 

where the L’ norm of the residual has been made evident. ,For computational purposes, 

however, formula (7) is more convenient. 

3 NUMERICAL EXPERIMENTS 

The test problem considered here consists of an heterogeneous slab of width L= 0.1 meters. 

The left half has macroscopic total cross section (T = 100 6’ , with a scattering part of the 

cross section c=O.5, and unit external source. The right half has cr = 200 m-’ , c=O.OS, and no 

source. It is solved using an S, Gaussian quadrature. We consider several uniform partitions 

into K cells, with h ranging from L/2 to L/128, and expansion orders A from zero to ten. In 

Fig. 1 we compare the first exact angular flux (v, to its approximations +?, and p, calcu%tXl 

with h=L/4 (K=4) and A = 2. Part (a)~ of the figure shows the three fluxes, while Part (b) 
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depicts the differences between the approximate fluxes and the exact solution. It is clear from 

the figure that @ is significantly more accurate. - 

A quantitative assessment of accuracy is obtained evaluating the L2-norm of the error, 

E=Jpz& , -=J~. (10) 

As no confusion can arise, we have used E to denote the L”-norm of E. In Fig. 2 (a) ye plot E 

and E as functions of h for A = 5. The predicted asymptotic convergence orders are verified. 

Notice that the error in (v is three orders of magnitude lower than that of 9 as soon as K is - - 

greater than 32. For coarser meshes, the difference is smaller, but for the full range E is at 

least 20 times smaller than E” Of most interest is the capability of improving the accuracy by 

increasing the expansion order. Fig. 2 (b) plots E and Z as functions of A for h= L/16. Note 

that as A is increased by one the error decreases by a factor of ten. Also, E is seen to be 

smaller than E” by a factor that ranges from 10 (for A =0) to 200 (for A > 4). 

a) Angular fluxes for the K=4 case, A =2. b) Differences between approximate fluxes 

and exact solution, K=4 case, A =2. 

Figure 1. Relation between approximate fluxes and the exact solution for the K=4 case, A&., 
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a) sand E” asfunctionofhfor h=Z. b) E and E” asfunctionofA 
Figure 2. Errors of approximate solutions in L2 norm. 

Numerical tests of a posteriori error estimators are aimed at showing that it behaves like 

the true error. In this case we address three types of behavior: The first one concerns the 

evolution of 7 and 6 as functions of h for fixed A . This is shown in Fig. 2 (a). The estimator 

correctly follows the error, showing that the higher order terms in Eq. (6) can be disregarded. 

A second assessment concerns the evolution of 17 with increasing A for fixed h. This is 

shown in Fig. 2 (b). The resemblance of the curves corresponding to the estimator and the true 

error is remarkable. The theory considers h + 0, so that this could not be predicted 

beforehand. To summarize, the results in Fig. 2 give us confidence on that, when the 

approximation is refined, if the estimator decreases by some factor, the true error has also 

decreased by approximately the same factor. 

For adaptivity purposes a third behavior is important, namely, for fixed h and A, the 

distribution of the estimated error over the ceils. This allows improving the approximation 

only where it is most needed. In Fig. 3 (a) the true error and the local indicators are plotted, 

computed using, 16 cells and an expansion order of 4. The same is done in Fig. 3 (b) for 64 

~cetls and A = 6. Both graphs show that the IocaI indicators follow closely the distributig ‘of 

the We error over the domain. The most critical ceil is the one adjacent to FL/~ from the 
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right, and adaptive procedures using the proposed indicator would refine this region. By 

comparing Figs. 3 (a) and (b), notice the high accuracy of the computation with h=L/16 and 

A = 4, which is improved by about six orders of magnitude when h=L/64 and A = 6, though 

the number of unknowns has just increased by a factor of 6. 

a) True error and indicator for K=16, A = 4. b) True error and indicator for K=64, A = 6. 

Figure 3. Behavior of the true error and indicator as function of the position. 
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