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Fracture Models

 Cohesive crack model -- assumes the process zone 
can be idealized as a surface (i.e., a curve in a 2D 
representation).

Example: quasibrittle material
with bridging between microcracks



Fracture Models

 Cohesive crack model -- assumes the process zone 
can be idealized as a surface (i.e., a curve in a 2D 
representation).
Example: quasibrittle material
with bridging between microcracks

Idealized as:

• Actual tractions are homogenized ()
• Kinematic effects of micro-cracks are lumped

to cohesive zone surface
 ~ a fictitious crack opening



Fracture Models

 Cohesive crack model -- assumes the process zone 
can be idealized as a surface (i.e., a curve in a 2D 
representation).
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Study Introduction

Objective: A “valid” means of 
modeling material localization 
in finite element analyses.

Goals:

 applicable to cohesive zone 
modeling

 “continuous discontinuity”

 arbitrary orientation of 
discontinuity relative to mesh

Approach: Develop a partition 
of unity FEM (PUFEM) that 
allows the displacement field 
to be enriched in the 
neighborhood of a strong 
discontinuity.

 can represent a discontinuity 
without mesh refinement

 can potentially represent the 
gradients near a surface of 
localization without mesh 
refinement



Background

Initial related studies
 Melenk and Babuska (1996)

Theory for PUFEM

 Belytschko and Black (1999)

• developed PUFEM for 
LEFM -- XFEM

• used asymptotic 
displacement fields near a 
crack tip for enrichment

Origins of this study

ARL (2001)

motivating problem: armor 
penetration

SNL

Initial problem: HDBT

Fracture modeling (LDRD fatigue)



Recent Related Studies

PUFEM-Cohesive Zone Studies
 Wells and Sluys (2001)
 Moes and Belytschko (2002) 
 Zi and Belytschko (2003) -- tip function addresses tip

position but not the field
 de Borst et al. (2004) & Mariani et al. (2003)

tip at element edges

Current work is closer to:
 Strouboulis, Copps, Zhang, and Babuska (2000, 2001, 2003)

numerical enrichment functions -- handbook functions

Origins of this study

ARL (2001)

motivating problem: armor penetration

SNL

Initial problem: HDBT

Fracture modeling (LDRD fatigue)



Mechanical Interlocking Effects in Bond

Transverse cracking Longitudinal cracking

(a) (b)

 Concrete Cracking and Crushing

 Surface structure failure of the FRP bar

QuickTime™ and a
BMP decompressor

are needed to see this picture.

AKA bond cracks AKA splitting cracks



Cohesive Zone Modeling of Splitting Cracks
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Sandia Problems



Preview

 PUFEM Displacement Field Enrichment

 General formulation

 My path to enrichment

 Analytical enrichment functions



PUFEM Displacement Field Enrichment

 Standard FEM

cohesive zone

enriched elements

Global displacement approximations

 PUFEM

Element displacement approximations
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Path to Enrichment



Enrichment Functions: An Analytical Source

Muskhelishvili formalism

Hong & Kim (2003) obtained a series solution to the inverse problem

Zhang & Deng (2006) obtained asymptotic solutions

– both assumed linear elastic isotropic material (except for cohesive zone)

Additional analysis has been used to: 

verify the proposed solutions

extend them for field variables required by the PUFEM

 Displacements

u1  iu2 
1

2
 z  z  z  z  

where  and  are analytic functions, and z = x+iy.

 z   z   z  z  z  z  
 Another set of analytic functions simplify ui,j and ij expressions



Enrichment Functions: An Analytical Source

 Displacement gradients

 Stress components

u1,1  iu2,1 
1

2
z  z   z  z  z  

u2,2  iu1,2 
1

2
z  z    z  z   z  2 z  

11  i12  z  z   z  z  z  2 z 

22  i12  z  z    z  z   z 



Enrichment Functions: An Analytical Source

 Analytic functions

 Super-position of two solutions yields a convenient solution form

 z 
1

2
z  cF z  z  cG z  H z  

 z 
1

2
z  cF z  z  cG z  H z  

where F, G, and H are entire (analytic over the whole domain)

n n

n n



n n

n n

Enrichment Functions: An Analytical Source

 Analytic functions F and G

 Super-position of two solutions yields a convenient solution form

where An and Bn are complex coefficients and
Un are Chebyshev polynomials of the second kind

F z /c  An

n 0

N

 Un z /c  G z /c  Bn

n 0

N

 Un z /c 



Enrichment Functions: An Analytical Source

 First term considered
 F(z)=G(z)=1
 H(z)=0

 u2

X/C

y/c

y/c

X/C

Problem for plots
E=107 psi, =0.3



Enrichment Functions: An Analytical Source

 First term considered
 F(z)=G(z)=1
 H(z)=0

X/C

Problem for plots
E=107 psi, =0.3

 22

y/c

y/c

X/C



Enrichment Functions: An Analytical Source

 First term considered
 F(z)=G(z)=1
 H(z)=0

X/C

Note: problems differ and CZ 
sizes are not to the same scale.

 Qualitative comparison of 22 with fine-scale FEA

y/c

Analytical Fine-scale FEA



Enrichment Functions

 Based upon the asymptotic solutions of Zhang & Deng 
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Preview

 Results for Model Problems

 Simple model problems & Meshes

 Example showing how enrichment->crack

 Results for aligned meshes

 Results for skewed meshes



Initial Simple Test Problems

This image cannot currently be displayed.

 Concrete test problems
• relevant to HDBT
• domain 1 m x 1 m
• process-zone size ~ O(250 mm)
• representative concrete tensile properties

(except for simplified linear softening)
• mode I quasistatic crack propagation

cohesive zone path

Problem geometry
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Initial Simple Test Problems

This image cannot currently be displayed.

 Concrete test problems
• relevant to HDBT
• domain 1 m x 1 m
• process-zone size ~ O(250 mm)
• representative concrete tensile properties

(except for simplified linear softening)
• mode I quasistatic crack propagation

cohesive zone path
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Spacial Discretizations
 Fine FEM meshes – accurate reference solution

41x40 ~ 3444 dofs

5x5 ~ 72+36 dofs 9x9 ~ 200+52 dofs 17x17 ~ 648+88 dofs
 PUFEM – Aligned Meshes

81x80 ~ 13,284 dofs61x60 ~ 7564 dofs



PUFEM Displacement Field Enrichment

fine-scale FEM solution: ux fine-scale FEM solution: xx

Example Problem:
concrete 1 m x 1 m 
in bending



Example response in the “tip-element”

enrichment
region

ux for tip-element
Surface plot
view

ux for tip-element

PUFEM

Fine-scale



Example enrichment in the “tip element”

u x 
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Extremes Histories
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aligned meshes with the  enrichment functions

c = 50 mm

Grid lines represent element spacing in the coarsest mesh.



PUFEM Skewed Mesh Tests

8x8 @ 45 16x16 @ 454x4 @ 45



Skewed-mesh: Results and Enrichment 

u1 x 

2

1

3

2

4

Using a single
enrichment
Function (G=1)

Node 2 is the only
enriched node

view



Skewed-mesh: Enrichment 

2 x  i x i2

i1

N N



11 x 

11 x 
+

“within 2% of being flat”

 i x ui

i1

N N





Skewed-mesh: Enrichment 
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Skewed mesh: Results
Results for the tip 1/10 of the way through the second element

u1

11



Skewed mesh: Additional Results
Results for the tip midway through the second element

u1

11



Neighborhood Enrichment
Aka the Mr. Roger’s modification

Enriches additional nodes within a user-
defined neighborhood of the tip.

Done each time the tip enters a new element.

r = 0 r = 63 r = 126



Extremes & Length Histories
skewed meshes with the  enrichment functions

8x8 mesh, c = 75 mm
Intersect enrichment
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Extremes Histories
skewed meshes with the  enrichment functions

Problem 2
c = 75 mm
Intersect enrichment

4x4 mesh, c = 75 mm
Neighborhood enrichment
Average deviations: 29 mm for r=0

20 mm for r=255 mm
19 mm for r=505 mm
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Ongoing and Future Work

 Multiple cracks -- stress relief in quasistatic 
propagation – cracks “compete”

 Mixed-mode cracking

 Enrichment function applicability

• Inelastic materials

• Inhomogeneous materials

• Anisotropic materials

 3D

For sandia report e-mail jvcox@sandia.gov



Observations & Conclusions

 Both forms of enrichment give good results for the model 
problem with aligned meshes.

 Other enrichment strategies can improve results but the 
added complexity may not be merited.

 Product form of enrichment has negative effects with a 
“coarse” skewed-mesh for F&G enrichment.

 -enrichment yields much better results for skewed meshes.

 Initial results are not very sensitive to c, but adjustment of c
for the tip-functions may be necessary for some classes of 
problems.

 PUFEM is exhibiting convergence (with mesh refinement)

 PUFEM for cohesive zone modeling of localization has 
potential and merits further investigation.

 No free-lunch -- algorithm complexity is high.
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Coarse-scale vs. Fine-scale: Qualitative Evaluation
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Coarse-scale vs. Fine-scale: Qualitative Evaluation
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Initial PUFEM Issues

 Crack profiles differed significantly with fine-scale results 
in the traction free region.

 If several terms are needed to obtain better crack profiles 
the efficiency will be reduced.

 A length scale exists in the enrichment functions.



Enrichment Modification

 Change to step enrichment

 Analytical radius

T ~ tip enrichment
S ~ step enrichment
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-- could be applied to the whole plane

a

a



9 PUFEM elements

Fine vs. Coarse -- Cohesive Zone Response
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