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Two of the more recent developments in thermal transport simulations are the 
incorporation of multiscale models and requirements for verification, validation, and 
uncertainty quantification to provide actionable simulation results.  The aleatoric 
uncertainty is investigated for a two component mixture containing a high thermal 
conductivity and a low thermal conductivity material.  The microstructure is varied from a 
coarse size of 1/8 the domain length to a fine scale of 1/256 the domain length and for volume 
fractions of high thermal conductivity material from 0 to 1.  The uncertainty in the 
temperatures is greatest near the percolation threshold of around 0.4 and for the coarsest 
microstructures.  Statistical representations of the aleatoric uncertainty for heterogeneous 
materials are necessary and need to be passed between scales in multiscale simulations of 
thermal transport. 

Nomenclature 
d = dimensionality of geometry 
f = volume fraction 
L = domain length 
T = temperature 
A = subscript designating material A 
B = subscript designating material B 
mix = subscript designating material mixture 
 = thermal conductivity 
 

I. Introduction 
ultiscale computational approaches are increasingly employed for heat transfer and fluid dynamics 
simulations since increases in computing power have enabled ever greater fidelity in models and 

simulations.1-3  Many systems and processes involve geometries and structures which span from macroscale down to 
microscale including transport in heterogeneous media and microdevices.  The use of multiscale modeling 
techniques requires verification and validation (V&V) and uncertainty quantification (UQ) methods applicable to 
these simulations in order to provide actionable data for decisions.4  Verification ensures that the simulation 
mathematics and code are correctly computing the solution to the model equations while validation compares the 
simulation results to the physical problem being modeled.  UQ calculates the statistical range by which a simulation 
result differs from the true value.5-7  To provide an illustrative example, we focus on thermal transport in 
heterogeneous media and UQ implications in such a material.   

Thermal transport in heterogeneous or disordered media requires knowledge of the material microstructure, 
especially at short length scales.8  An example of a heterogeneous media is a material containing two constituents, 
one with a high thermal conductivity and a second with a lower thermal conductivity.  Many models have been 
developed for the effective thermal conductivity in such a material as well as bounds on the value.9-14  For 
uncertainty quantification, the variability in the material properties are needed in addition to the mean thermal 
property.  For a layer containing two materials, effective thermal conductivities and their variation are predicted for 
a given microstructure revealing the stochastic nature and inherent uncertainty present.8,14  The data needed to 
determine and propagate uncertainty are discussed.  This paper advances the development of multiscale transport 
modeling by examining the application of UQ to porous media. 
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II. Uncertainty Quantification 
Computational multiscale modeling has been applied to problems in material science such as fracture in brittle 

materials15 and nanocrystalline plasticity.16  A recent review of uncertainty quantification in multiscale materials 
simulations summarizes the types of uncertainty, representation of uncertainty, uncertainty propagation, and use of 
sensitivity analysis.15  Two types of uncertainty are aleatory (inherent randomness) and epistemic (lack of 
knowledge).  Aleatory uncertainty can be described statistically and more data can help to better represent the 
variability in the material properties.  Epistemic uncertainty is due to bias, incorrect models, or missing physics in 
the model and cannot be represented statistically.5,6,15  A major challenge to applying UQ to multiscale models is the 
propagation of uncertainties between scales.17  Most multiscale models can be classified as information-passing or 
concurrent.  Information-passing multiscale methods use computational schemes targeted for a specific scales.  The 
calculations at finer scales obtain values such as accommodation coefficients or effective material properties that are 
used in larger scale simulations.  Concurrent multiscale models are used for problems in which it is necessary to 
resolve multiple scales to capture the phenomena of interest such as fracture.  In these schemes, information is 
passed between subdomains represented by different models resolving the necessary scales.  For both information-
passing and concurrent methods, UQ requires that not only the relevant quantities themselves but also the statistics 
associated with those quantities be preserved and passed between scales.17  Sensitivity analysis can be employed to 
highlight the variables to which the transport processes are most sensitive and future efforts should be focused to 
reduce uncertainty.  We examine the aleatoric uncertainty associated with material variability in a heterogeneous 
composite in the next section.  

III. Thermal Transport in Porous Media 
We utilize a steady state thermal conduction (Fourier’s law) model to illustrate UQ for heterogeneous media.  

The model is a two-dimensional steady state calculation on a square domain (5.12 cm on a side) in which the west 
side (x=0) is held at T1=100 and the east side (x=L) is held at T2=0.  The south (y=0) and north (y=L) sides are 
treated as periodic boundary conditions, such that Tnorth = Tsouth at every value of x.  The domain was meshed using 
uniform linear quadrahedral finite elements of size 0.01 cm such that the overall domain is 512x512 elements. 

Two different materials were used in the model:  (A) a high conductivity, high density material, reminiscent of a 
metal and (B) a low conductivity, low density material (an insulator).  Material properties were: ρA=2500 kg/m3, 
λA=100 W/m-K, CpA=1000 J/kg-K, αA=4e-5 m2/s; and ρB=2.5 kg/m3, λB=0.1 W/m-K, CpB=1000 J/kg-K, αB=4e-5 
m2/s.  (Note that the thermal diffusivity, α=λ/(ρCp), for the two materials is exactly the same.)   

For a uniform material, the temperature solution is given by Eq. (1): 
 

 TൌT1 ቀ1 െ
x

L
ቁ (1) 

 
Note that the steady state solution (1) is independent of material properties, while a solution for the unsteady 
problem would be a function of the thermal diffusivity.  When a mixture of the two materials is applied to the 
domain, the solution to this canonical test problem 
begins to vary.  It is this mixture behavior and its 
dependence on scale that is of interest. 

A. Steady State Conduction 
Random mixtures of the two materials were 

constructed in which the relative volume fractions of A 
and B were exactly controlled to specified values.  The 
domain is always fully filled so that the volume 
fractions fA and fB sum to unity.  The proportions 
studied here ranged from fA=0.0625, fB=0.9375 to 
fA=0.9375, fB=0.0625 using steps of 0.0625 (1/16).  
The fA=1, fB=0 and fA=0, fB=1 cases are trivial and 
correspond with the analytical solution (1).   
  

Fig. 1:  Pseudo log normal distribution created 
by using mixture of size bins. 
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Geometry Temperature Contours Heat Flux 

 

 

 

 

 

 

 

Fig. 2.  Random mixtures at various length scales, isotherm contours, and heat fluxes.   
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Geometrical feature lengths were varied over six levels ranging from the coarsest with length scale of L/8 to the 
finest with length scale of L/256 where L is the overall domain length.  For our test case of L=5.12 cm, the finest 
scale is 200 μm and the coarsest is 6.4 mm.  Each of these geometries was considered monomodal; only features of 
the given size were included, whether that feature was of material A or of material B.   

We also constructed some geometries with a “pseudo log normal” distribution.  These consisted of mixtures of 
the various size scales such that proportions of each size bin approximately fits a Gaussian distribution with the 
abscissa represented on a log scale, as in Fig. 1.  In this distribution, the fractions at the various scales were: L/16 
=1/16, L/32 = 15/64, L/64 = 13/32, L/128 = 15/64, L/256 = 1/16.  In the log normal distribution, the fractions of 
materials A and B were held constant over all length scale bins.  That is for a fA=0.25, fB=0.75 case, one quarter of 
the L/16 size blocks were material A, one quarter of the size L/32 blocks were material A, and so forth. 

The thermal transport was solved using the Sierra-Aria code developed and maintained at Sandia National 
Laboratories.18  Extensive code and simulation verification has been performed on Aria for heat transfer simulations.  
Examples of the six different length scales (monomodal) and the log normal distribution are shown in Fig. 2 for 
fA=0.4375, fB=0.5625.  Here the high conductivity material (A) is shown in red and the low conductivity (B) in 
yellow.  The underlying finite element mesh for each of these cases is identical: a 512x512 element quad mesh.  The 
corresponding temperature isotherm contours (with 10 K spacing) and heat flux pathways from steady state 
calculations are also shown.   

Note that there are continuous heat flow pathways through the conductive portion of each of these instances 
shown.  That is, a percolation network is established (though just barely for some cases such as the L/16 and L/32 
instances shown in Fig. 2).  However, it is clear from the figure that many of the pathways depend on heat transfer 
through shared corner nodes.  This contrasts with a traditional two-dimensional site-bond lattice with four 
connections per site (north, south, east, and west).  In that case we expect the percolation threshold to occur at a 
connection density of 0.5.  It can be seen that in our geometry, percolation happens at a lower density (at least as low 
as fA=0.4375 as seen in Fig. 2, other instances occur at even lower fA values due to finite size effects).  This is 
because of the shared corner node phenomenon which allows heat flow in diagonal directions (NE, NW, SE, and 
SW) in addition to the four ordinal directions. 

Multiple randomized realizations were constructed at each geometrical scale.  To characterize the variations, 
statistics were performed on the temperature at all 513 nodes at each x location (i.e. include all y values at a single 
value of x).  Mean, standard deviation, and maximum and minimum values were computed.  Typically one hundred 
different geometry realizations were combined at each scale level.  Figure 3 shows an example of the temperature 
variations for one particular realization at a feature length scale of L/256 and fA=fB=0.5, with mean, maximum, and 
minimum on the left side graph and standard deviation on the right.   

 
 
 

Fig. 3.  Temperature variation as a function of x location for one particular realization at the 
feature scale of L/256 and fA=fB=0.5. (a) Mean, maximum, and minimum. (b) Standard deviation.

 

(a) (b) 
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Figure 4 shows the compilation of one hundred realizations at the same length scale level (L/256) and volume 
fractions (fA=fB=0.5).  Note that the jaggedness has been smoothed, and the mean line tracks the expected linear 
profile nicely, but there remains a certain level of variation, characterized by the maxima, minima and standard 
deviation.  All three of these quantities exhibit “end effects;” the Dirichlet boundary conditions at x=0 and x=L limit 
the variations near these locations.  Away from the ends, the level of variation (both in max/min range and in 
standard deviation) approach constant values.  We have chosen standard deviation and maximum-to-minimum range 
as metrics for comparing between different length scales and volume fractions.  For each set of conditions (usually 
consisting of 100 realizations), standard deviation and max-to-min range data between x/L of 0.25 and 0.75 were 
averaged to remove end effects.  Figure 5 shows these variations.  Note that there is a strong amplification of the 
variation as the percolation threshold (at fA~0.4) is approached from either side. 

In addition to the temperature variations, another characteristic that can be assessed is the so-called effective 
thermal conductivity of the mixture.  This is done by computing the total integrated flux leaving the system at x=L, 
then dividing by the area and overall thermal gradient.  Fig. 6 shows the effective thermal conductivity as a function 
of the fraction of the two components for the various different feature sizes (L/8 to L/256).   

 

Fig. 4.  Temperature variation as a function of x location (compilation of 100 realizations) at the 
feature scale of L/256 and fA=fB=0.5. (a) Mean, maximum, and minimum. (b) Standard deviation.

 

Fig. 5.  Temperature variations as a function of volume fraction and feature length scale.  
(a) standard deviation. (b) Maximum-to-minimum range. 

 
  

(a) (b) 

(a) (b) 
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Fig. 6.  Effective thermal conductivity (mean, median, and max/min) computed from steady-state 
simulations.  At least 100 geometric realizations were used in computing each of the 
points on these graphs.  Also shown are symmetric and asymmetric effective media 
theory lines and parallel and series limiting cases.  Feature length scales were: (a) L/8, 
(b) L/16, (c) L/32, (d) L/64, (e) L/128, (f) L/256.   

 

(c) (d) 

(e) (f) 

(a) (b) 
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All of the results in Fig. 6 were based on statistics of at least 100 geometric realizations at each fA and feature 
length scale.  Mean, median, and maximum/minimum are shown.  A logarithmic scale is used for the ordinate to 
illustrate the full range of behavior.  Also shown are some theoretical results, including the symmetric (Eq. 2) and 
asymmetric (Eq. 3a, b) effective medium theories (i.e. Bruggeman theory) and the parallel and series upper and 
lower limits.  The effective medium theory expressions are given here, where λmix is the mixture thermal 
conductivity and d is the dimensionality of the geometry (d=2 in our example).  Also given are the parallel (Eq. 4) 
and series (Eq. 5) forms of the mixture rules. 

 

Symmetric fA
ሺ஛Aି஛mixሻ

൫஛Aା൫d‐1൯஛mix൯
൅ fB

ሺ஛Bି஛mixሻ

൫஛Bା൫d‐1൯஛mix൯
ൌ 0 (2) 

 

Asymmetric 
ሺ஛mixି஛Aሻౚ

஛mix
ൌ

ሺଵି୤Aሻౚሺ஛Bି஛Aሻౚ

஛B
 (3a) 

 

Asymmetric 
ሺ஛mixି஛Bሻౚ

஛mix
ൌ

ሺଵି୤Bሻౚሺ஛Aି஛Bሻౚ

஛A
 (3b) 

 
Parallel λmix ൌ fAλA ൅ fBλB (4) 
 

Series λmix ൌ
ଵ

fA ஛A⁄ ାfB ஛B⁄
 (5) 

 
There are a few interesting points to be brought out.  First, as expected, all the results are indeed bounded by the 

parallel and series limits.  Next, we see clear indications of higher variability (the difference between mean and 
median values along with the large max-to-min ranges) with the coarser length scale models, as compared with the 
finer length scale models.  Again, this is not surprising.  The largest changes and variations in effective thermal 
conductivity occur near the percolation threshold, circa fA=0.4.   

It is also interesting to compare these results with the Bruggeman effective medium theories (symmetric and 
asymmetric).  Note that the simulations show a similar shape to the symmetric theory line but are noticeably offset.  
The symmetric theory line indicates a percolation threshold right at fA=0.5; here we observe the transition at a 
somewhat lower fA value.  It is also interesting to note that the max-to-min range variations at the coarsest (L/8) 
simulated scale nearly correspond with the Bruggeman asymmetric formulas.  The asymmetric formulas are meant 
to describe the situations where one has inclusions of material B in a continuous matrix of material A or vice versa.   

Given that the variability, and therefore uncertainty, decreases as the size of the microstructure becomes small 
compared to the domain length, a first approach to reduce aleatoric uncertainty for thermal transport in 
heterogeneous media appears to be to increase the domain length.  However, reducing uncertainty for a 
heterogeneous media across all scales in this fashion will not be viable in cases when the microstructural scale is set 
by some fundamental feature size.  In our results, the minimum to maximum variation in temperature was still 10K 
for the finest structure computed, L/256, near the percolation threshold so variability and associated uncertainty is 
inherent for heterogeneous materials.  When the limits of reducing aleatoric uncertainty by increasing the domain 
size have been reached, sufficient simulations are required to capture the variations in the material through statistical 
means such as generating the probability density function.8,14  These probability density functions are then a 
mechanism by which the uncertainties can be propagated between scales in a multiscale thermal transport 
simulation.7,16-17   

Although we principally consider UQ behavior, the simulations performed here in some respects also address 
model validation.  To this end, we can state that as bounding conditions, the parallel and series “models” are 
validated—every simulation case falls between them.  In contrast, the small but noticeable difference between the 
symmetric effective medium theory (the “model”) and our simulation results (numerical “experiments”) points to a 
model which is not validated; there are aspects of the simulations (likely the shared corner phenomenon) which are 
not captured by the effective medium theory model.  There is evidently a difference in the “physics” represented by 
the symmetric model and our simulations.  Note that we do not state which of these most closely represents reality 
(an actual geometry constructed of actual material); from this perspective it is better to speak of verification of the 
simulations in appropriate limits corresponding to the theoretical assumptions of the effective medium 
approximation.   
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IV. Conclusions 
The increasing use of multiscale transport models necessitates the development of uncertainty quantification 

methodologies applicable to multiscale heat transfer simulations.  Heterogeneous mixtures can exhibit 
microstructure on a scale not much smaller than the computational domain which impacts the predicted material 
variability and calculated aleatoric uncertainty.  The aleatoric uncertainty is that due to inherent randomness and is 
illustrated for steady state thermal transport in a two component mixture.  The ratio of the domain length, L, to the 
microstructure size was varied from L/8 to L/256 and the volume fraction of high conductivity material, fA, varied 
from 0 to 1.  A peak in the uncertainty, variability, was observed near the percolation threshold of around fA of 0.4 
and decreased by a factor of 2 from the peak for fA’s greater than 0.75 or less than 0.25.  The uncertainties in the 
temperatures, as captured by the maximum – minimum values for the simulations, were around 30K for the coarser 
structures:  L/8, L/16, and L/32; and as much as 10K for the finest structure: L/256. The range of the effective 
thermal conductivities varied by over an order of magnitude for the coarser L/8 and L/16 microstructures.  Statistical 
representations of the aleatoric uncertainty for heterogeneous materials are necessary and need to be passed between 
scales in multiscale simulations of thermal transport.  
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