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First integrated MagLIF experiments
successfully demonstrated the concept
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= Fusion yields and temperatures
= Stagnation measurements

= Bangtime (x-ray and neutron)
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= DT/DD vyield ratio
= NTOF spectra

= Comparison with simulations

= The future



Magnetized Liner Inertial Fusion is a
Magneto-Inertial Fusion concept that
we are evaluating on Z
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Maénetization Laser heating Compression
Magnetization and laser heating relax the implosion
velocity, areal density, and convergence requirements

of inertial confinement fusion




Stage 1: Magnetization ) .

= Be liner containing fusion fuel
= D2 gas ~ mg/cc(n./n; <0.1)
= Axial magnetic field is applied

to target
= 10-30T
= ~msrisetime
= Z current starts creating an
azimuthal drive field

Magnetization
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Stage 2: Laser Heating ) .

Laser heating

Liner begins to compress

= OD is moving but ID is stationary

Laser heats the fuel
= T.~ 100s of eV

Liner ID begins to implode
Fuel conditions isotropize

over the 10s of ns of the
implosion




Stage 3: Compression ) .

= Axial magnetic field insulates
fuel from liner throughout
implosion

= Field increases substantially through
magnetic flux compression

= Near adiabatic compression

" Fuel is heated though PdV
work to keV temperatures

= Liner stagnates
Compression = Plasma pressure exceeds drive pressure
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Putting it all together... )
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.




Outline ) &

= Summary of experimental results
= Define Magnetized Liner Inertial Fusion (MagLIF)
= Experimental setup

= Details of integrated MagLIF experimental results
= Fusion yields and temperatures
= Stagnation measurements

= Bangtime (x-ray and neutron)
= X-ray imaging
= Evidence of magnetic flux compression
= DT/DD vyield ratio
= NTOF spectra

= Comparison with simulations

= The future



Prior to the integrated experiments, a series of
focused experiments were conducted to test all
of the critical components of MagLIF

= Laser preheat

= >20 laser-only
experiments
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= Applied magnetic field
= >10 experiments

= Liner Stability
= >30 experiments

= Modified power flow

= Geometry scanto
minimize losses

= >20 experiments

= Fully integrated shots
= 52Z+ZBLshots

~T N\




The target design for these initial experiments
incorporates the knowledge gained from focused
experiments and extensive simulations
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= Beryllium liner with aspect ratio 6
= Thick liner is more robust to instabilities 0.45 mm 2.5-3.5 um

= Still allows diagnostic access > 5 keV —

= Top and bottom implosion cushions

= Mitigates wall instability

= Standoff between LEH and
imploding region

= Avoid window material mixing with fuel

= Exit hole at bottom of target

= Avoid interaction with bottom of target




Initial experiments were conducted ) i,
at1=19 MA,B=10T, and Laser = 2.5 kJ

Time of
experiment
12 |
= 10 ‘1' 20
c 8 13 Laser energy is split
5 j s Ie into 2.pulses:
g, gs 1% pulse intended to
— S
0 < 12 £5 destroy LEH
-3 2 -1 0 1 = E= :
Tmens]  yqf B 1588 2nd pulse intended to
S 5 8 heat fuel
e L 13-
Magnetic field risetime s} 5 2
is approximately 2 ms 105 S . 2 kd
=X
L s | 0.5kJ
: 0 PYeves 0 2
B is constant over the 290 000 ey 3100 g
timescale of the . % 05
experiment Peak current is 19 MA 3

Magnetic fieldis 10 T

0
3038 3040 3042 3044 3046

Total laser energy is 2.5 kJ Time [ns]
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Thermonuclear DD yields in excess of
1012 were observed in experiments with
laser and B-field

1E+13 -
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= High yields were only observed

ez | on experiments incorporating
. both applied magnetic field and
2 o laser heating

= A series of experiments without
laser and/or B-field produced
yields at the background level of
the measurement

T T T T T T T T T Result of 22583 is not well

Null B-field B-field understood nor reproduced at
and Laser this time

1E+10 +

1EH)9 A
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Neutron Time of Flight spectra indicate g
ion temperatures greater than 2 keV at
stagnation

= DD neutron peak
® Data (fit) . .
——Gaussian Fit observed in experiments
¢ Data (not fit) with significant yield
(>1e10)

-
~
U

= Gaussian profile fit to high
energy side of peak to
determine ion temp

Nomalized dN/dE
-
W

= Jon temperatures were
between 2 and 2.5 keV for
high yield experiments

0.25 +

1T T T T T T T T T T T T 1T 177 LI}
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

Energy (MeV) 15




High energy x-ray spectra indicate )
electron temperatures = 2.9-3.5 keV in
experiments with laser and B-field

, = Electron temperatures

107 e )
— B-field only inferred from

—— B-field and Laser continuum emission

T=35key 1 " >2keV observed on
shots with yield

= Approximately 1 keV
observed on shots
without yield

X-ray Yield [J/eV/mm]

5 ' | = Lower bound on

8 Ps]Ot E12 k“t/ 16 measurement capability
otlon ener e .
9y [keV] is around 1 keV
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Neutron yield, ion temperature, and @&z
electron temperature all trend as expected

= Experiments with

experiments with
high DD yield
(more on this later)

I DD yield ; Tejectron = 1 keV have
S DT yield 110 negligible DD yield
3t/ I lon Temp
= Electron T .
> ectron Temp .41 " ForT,=T,>2keV,
v 10" o . ec iy
o2 0 significant yield is
E " observed
I .
1 Measurable DT yield
is observed on
O [p]
©
<
AN
N

22481 B *-f

22467_4 :

72629 B i
z2583 BL—'-| :
)
-
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Narrow (<2 ns FWHM) peak on PCD and
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Si Diode signals is consistent with NTOF

bang time estimate

—SID > 5.4 keV |
—PCD > 1.4 keV |
.................. NTOF bang time |

x-ray bang time ||

—_
———

o
e

o (
N

Normalized Amplitude
o
()}

O
N

o)
3090

= Narrow x-ray signature
only observed on
experiments with
significant neutron yield

= X-ray burst has high
energy components

= X-ray bang time and
NTOF bang time agree
within the uncertainty
of the measurements




Time-resolved x-ray pinhole imaging =

Laboratories

(hv > 2.8 keV) shows a narrow emission
column during peak in X-ray signal

Time [ns]

3096 3098 3100 3102
— 1- ]
-]
< H4  HA
()
505
=
<E( \M

(@

\ a

Axial Distance [mm]
~N O o AW

1 01 -101-101-1201
Transverse Distance [mm]

= Emission column is observed

only during the peak in the x-ray
signal

Emission column is only
observed on experiments with
high neutron yield

Stagnation column width is at
the resolution limit of the
instrument (~150 microns)




High energy x-ray signal and narrow =
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emission region are absent in null

experiments e
. "°[ Emission only —— Integrated > 2.8 keV |

Liner emission 3  observed with —Integrated > 1.4 keV/|

is observed in § 1} B+L

all experimentsg -

Liner emission £ °°

isatalower =

P S S T R T T S S R S —

photon energy b4

(< 2.8 keV)

3096 3098

Liner emission
is getting larger
at late times




A new self-emission diagnostic was e
developed, which helps diagnose the
stagnation column with high resolution

Aperture block Crystal ® Bent crystal imager, similar
Source . .
to backlighter system, but in
self emission with a Ge 220
crystal

= |maging continuum emission
from stagnation column

= Given the instrument
response and the liner
opacity, the signal should
primarily consist of 6 and 9
keV photons

To Camera

21




High resolution images of the x-ray emission
from the hottest part of the fuel show a
relatively stable stagnation columno

= Lineouts of stagnation column vary
from 60 to 120 pm FWHM (resolution
is about 60 microns)
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€
= Emission is observed from about 6 mm %3

of the 7.5 mm axial extent 2
34

= Emission region does not define the -
fuel-liner boundary, but defines the <5

hottest region of the fuel

(o)}

= Stagnation column is weakly helical
with 1.3 mm wavelength and 0.05 mm

offset 05005 -02 0 02

Transverse Position [mm]
22
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Measured and inferred stagnation
parameters are consistent with the

measured DD vyield
= Hot fuel: r =40-50 pm, h =4-6 mm
= V=2.0-47x10°cm?3
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= t=1-2ns
= Stagnation density = 0.2-0.6 g/cm3
" n=0.66-2.0 x 1023/cm?3

= Stagnation temperature = 2-3.5 keV
= <ov>=0.5-4.4 x102°

= f=0.5n%<ov>=1.1-88 x 102°/cm3s
= (Calculated Yield = tVf = 2e11-8e13 DD neutrons
" Measured yield = 5e11-2e12 DD neutrons 53




Yieldy,/Yield,, and NTOF spectra
indicate significant magnetic flux

compression

B*r=0
Ypr/Ypp~ 10%

Relatively low
estimated pr for
these experiments
(2.0 mg/cm?)

B*r > 40 T-cm
Ypr/Ypp~ 10

0 1 1
10 12 14

Experiment Simulation

10
0.8
067
0.4r
0.2
10 1I2 1I4 1I6

Neutron Energy [MeV]
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Experiment Simulation

1I6 1.8
Neutron Energy [MeV]
is consistent with
B*r = 40-110 T-cm

NTOF spectra are
consistent with
B*r = 45 T-cm
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Laser heating was not optimized for g
these experiments

= Offline laser transmission
measurements indicate that
the majority of the laser
energy does not make it
through the foil

Simulation

DD Yield
)

= Simulations show the
efficiency of laser-energy
coupling in these targets is a
critical factor )

10 —_

10° 10°

= Recent laser transmission Laser Energy [J]

experiments with smoothed Experiments will be conducted in
beam show significantly near future to test improvements in

. . . . laser coupling with smoothed beams
improved foil transmission s




Experimental observables are well &3

Laboratories

matched by 2D simulations
Parameter | Experimental _____|Simulaton

Current 19+ 1.5 MA
Implosion time 90+ 1 ns
Energy absorbed in gas Less than 600 J

Rgtag hOt plasma 44 =13 ym

Tions Telec 2.0-2.5 keV, 2.8-3.5 keV
Density,, 0.4 +0.2 g/cm?

ORiner 0.9 £ 0.3 g/cm?

B*rstag 40-110 T-cm

DD vyield 2.0+ 0.4 x 1012

DD/DT yield ratio 40 £ 20

DD, DT spectra |sotropic, asymmetric
Burn duration 1.5-2.3 ns (x-rays)

19 MA

90 ns

150 + 50 J

40 uym

3.0+ 0.5keV, 2.7 £ 0.5 keV
0.4+0.2 g/cm3

0.9 g/cm?

48 T-cm

4.4 £ 0.9 x 10"2 (no Nernst term)
41-57

|sotropic, asymmetric

1.6 £ 0.2 ns (neutrons)
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Significant upgrades to key components of
MagLIF are planned for the near future to test

our understanding
= Laser energy upgrade in progress
= Expect 4 kJ early this summer

= 6+ kJ is expected in early 2015
= Laser beam smoothing is under investigation

= Magnetic field upgrade available
= 15T is now available
= Up to 25T is expected in early 2015
= 30+ T is possible by the end of 2015

= > 20 MA drive current expected by early 2015
= Up to 25 MA may be possible by the end of 2015
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First integrated MagLIF experiments
successfully demonstrated the concept
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