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Problem: Processing and thermally induced residual stresses 
lead to failure of ceramic-based microsystems components  
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spherical tip- 10 um nominal radius

Can nanoindentation be used as a method to 
measure residual stress in brittle materials?
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• A very noticeable and repeatable difference in measured indentation 
response between unstressed and stressed glass.

An initial observation:
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Selected Previous Investigation of residual stress 
measurement using instrumented indentation

• Suresh, S. and Giannakopoulos, A.E., "A new method for estimating residual stress by 
instrumented sharp indentation", Acta mater., vol. 46, no. 16, p. 5755 (1998).

– Attributes measurable differences in the indentation load-displacement response to the indentation contact 
area. 

– Attempts to elicit values of the residual stress from differences in load in depth-controlled experiments 

• Xu, Z.H., and Li. X. "Influence of equi-biaxial residual stress on unloading behavior on 
nanoindentation", Acta Materialia, vol. 53, p. 1913 (2005).

– empircally-based model using unloading portion of indentation load-displacement curve

• Swadener, J.G., Taljat, B., and Pharr, G.M., "Measurement of residual Stress by load 
and depth sensing indentation with spherical indenters", J. Mater. Res., vol. 16, no. 7, 
p. 2091 (2001).

- Uses spherical cavity model to isolate elastic-plastic testing regime as optimal for sensing residual stress in 
substrate materials using instrumented indentation

- Demonstrates that elastic residual stress cannot be sensed by instrumented indenation when “full” plasticity is 
achieved in the substrate during the experiment.

All previous investigations rely on a measurable difference in the indentation load-displacement 
response between stressed and unstressed materials which are otherwise identical

E/y ≈ 25 in glass, E/y ≈ 150 or greater in most metals.
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A series of finite element  simulations were performed to 
investigate the role residual stress on the indentation response

material 
properties

tip geometry residual 
stress

E=72 GPa
y=3 GPa

spherical-
10 m radius

1) none
2) -500 MPa

E=72 GPa
y=3 GPa

conical-
70.3º half-angle

3) none
4) -500 MPa

E=72 GPa
y=600 MPa

spherical-
10 m radius

5) none
6) -500MPa

E=72 GPa
y=600 MPa

conical-
70.3º half-angle

5) none
6) -500MPa

• 8 simulations- displacement control 
to 1 um depth

Simulation Details:
• frictionless
• rigid tip
• substrate 30x40 m –fixed
• approx. 20,000 elements
• axisymmetric elements
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1 m displacement 
boundary condition Spherical Tip Radius=10 m

Conical Tip Angle=70.3

• FE meshes and boundary conditions
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10 m spherical tip conical tip

E= 72 GPa
y= 3 GPa

E= 72 GPa
y= 600 MPa

Stressed substrates gave a significantly different 
load-displacement response in every simulated case
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E/y Ratio
(E=72 GPa)

Tip 
Geometry

Substrate
Stress
(MPa)

*Modulus
O-P method

(GPa)

*Modulus
True Ac

(GPa)

Hardness
O-P Method

(GPa)

Hardness
True Ac

(GPa)

0 83 82 6.04 6.0424
(υ=0.2)

Spherical
10 m rad. -500 81 81 6.49 6.45

0 81 79 6.48 6.2224
(υ=0.2)

Conical
70.3º half-angle -500 83 80 7.05 6.56

0 93 84 1.97 1.59120
(υ=0.3)

Spherical
10 m rad. -500 98 83 2.17 1.55

0 95 80 2.19 1.56120
(υ=0.3)

Conical
70.3º half-angle -500 103 81 2.50 1.56

• O-P method relies on unloading portion of indentation load-displacement curve for 
computing contact stiffness, S, contact area, Ac, and ultimately hardness, H, and 
modulus, Er, material properties

O-P method does not account for indentation pile-up

• Properties determined using True Ac rely on the contact area between the indenter tip 
and substrate material determined by the finite element simulation

Using True Ac determined by FE accounts for indentation pile-up

 is a correction factor dependent on tip geometry ≈ 1.04-1.1

Oliver, W.C., and Pharr, G.C.,"An improved technique for determining hardness and elastic modulus using load and displacement
sensing indentation experiments" J. Mater. Res., Vol. 7, No. 6, 1992, p 1564.

Tabular analysis of FE results begins to reveal trends:

Key Formulas
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Using true contact area in hardness determination 
removes the influence of indentation pile-up

Conical Tip Spherical Tip
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Region of not fully developed 
plastic zone- residual stress 
successful measurement 
demonstrated in this regime [1]

E/y= 120
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[1] Swadener, J.G., Taljit, B., Pharr, G.M. JMR, v.16,p.2091,2001

• Compressive residual stress does not impact the true hardness when a material with a high 
E/y ratio is indented with a conical tip 

• Compressive residual stress measurably impacts the true hardness when a material with a high 
E/y ratio is indented with a spherical tip only over a certain range of indentation depths 

True Hardness is the hardness 
value computed using True Ac
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Conical Tip Spherical Tip

Measurable difference in instrumented indentation 
response in materials with low E/y ratio

E/y= 24
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• Compressive residual stress measurably impacts the true hardness when a material with a 
low E/y ratio is indented with either a conical or spherical tip across a wide range of 
indentation depths, why?
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Stress distributions at 1m indentation depth
conical tip

E/y= 120

E/y= 24 E/y= 24
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Stress distributions at 1m indentation depth
spherical tip

E/y= 24 E/y= 24

E/y= 120
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Elastic-Plastic indentation described by the expanding 
cavity model

• When the yield point is first exceeded, the plastic zone is small and fully contained by 
material that remains elastic.  In this circumstance , the material displaced by the 
indenter is accommodated by an elastic expansion of the surrounding solid.  K.L 
Johnson, "Contact Mechanics", Cambridge University Press, 1985.
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When measuring residual stress, the expanding cavity model shows 
the benefit of performing experiments in the elastic-plastic regime
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for spherical tip, 
(a/r) is depth to tip radius ratio 

for conical tip

Non-Dimensional Strain • plastic refers to "fully developed" plastic zone underneath 
tip. In the absence of indentation pile-up, this result 
demonstrates that distinguishing between stress and 
unstressed material using nanoindentation is not possible 
in the plastic region of the universal curve.

• A fully devloped plastic zone may never be achieved 
during indentation of a low E/y material
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Instrumented indentation experiments showing a measurable 
difference between stressed and unstressed glass 
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Preliminary experiments using an in-situ stressing fixture 
support previous experimental and simulated observations
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• A plastic zone always constrained to region underneath tip, as demonstrated in 
the low E/y simulated results corresponds to a not fully developed plastic zone.

Observations and conclusions drawn from simulated results

An indentation experiment that creates a large elastic zone and a small confined plastic zone is 
most useful for  measuring influence of residual stress using nanoindentation.  Glasses and 
Cermanics are favorable materials for this type of measurement because of their high E/y ratio

These results showed a measurable difference in indentation response between 
stressed and unstressed substrates for both spherical and pyramidal tip geometries 

These results also showed a measurable difference in indentation response between 
stressed and unstressed substrates, that difference is completely attributable to 
"indentation pile-up" phenomenon

• A plastic zone that breaks out to the substrate surface, as demonstrated in the 
high E/y simulated results corresponds to a fully developed plastic zone. 

[2] Johnson, K.L. Contact Mechanics, Cambridge University Press, pg. 171-179.
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