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Problem: Processing and thermally induced residual stresses
lead to failure of ceramic-based microsystems components
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Can nanoindentation be used as a method to
measure residual stress in brittle materials?

An initial observation:

* A very noticeable and repeatable difference in measured indentation
response between unstressed and stressed glass.

Stress Profile in
Ion-Exchanged Glass

Tension

0

L N 1
Q =
= . o
n Compression || @
—— |——

~10 um

Dept. 1824 Microsystems Materials

Load On Sample (mN)

PPG Glass — 500 mN load

spherical tip- 10 um nominal radius

500

400 |-

300

200

100

0

ion-exchanged
4hr./400°C
B as-received
\ \ |
0 500 1000 1500 2000

Displacement Into Surface (nm)

ﬂ'l Sandia National Laboratories




‘ Selected Previous Investigation of residual stress
measurement using instrumented indentation

All previous investigations rely on a measurable difference in the indentation load-displacement
response between stressed and unstressed materials which are otherwise identical

« Suresh, S. and Giannakopoulos, A.E., "A new method for estimating residual stress by
instrumented sharp indentation", Acta mater., vol. 46, no. 16, p. 5755 (1998).

— Attributes measurable differences in the indentation load-displacement response to the indentation contact
area.

— Attempts to elicit values of the residual stress from differences in load in depth-controlled experiments

« Xu, Z.H., and Li. X. "Influence of equi-biaxial residual stress on unloading behavior on
nanoindentation", Acta Materialia, vol. 53, p. 1913 (2005).

— empircally-based model using unloading portion of indentation load-displacement curve

« Swadener, J.G., Taljat, B., and Pharr, G.M., "Measurement of residual Stress by load
and depth sensing indentation with spherical indenters”, J. Mater. Res., vol. 16, no. 7,
p. 2091 (2001).

- Uses spherical cavity model to isolate elastic-plastic testing regime as optimal for sensing residual stress in
substrate materials using instrumented indentation

- Demonstrates that elastic residual stress cannot be sensed by instrumented indenation when “full” plasticity is
achieved in the substrate during the experiment.

E/oy = 25 in glass, E/cy = 150 or greater in most metals.
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A series of finite element simulations were performed to

investigate the role residual stress on the indentation response

8 simulations- displacement control
to 1 um depth

material | tip geometry | residual
properties stress
E=72 GPa spherical- 1) none
c,=3 GPa 10 um radius 2) -500 MPa
E=72 GPa conical- 3) none
c,=3 GPa 70.3° half-angle 4) -500 MPa
E=72 GPa spherical- 5) none
6,600 MPa | 10 um radius 6) -500MPa
E=72 GPa conical- 5) none
6,=600 MPa | 70.3° half-angle 6) -500MPa

Simulation Details:

* frictionless
* rigid tip

* substrate 30x40 um —fixed
* approx. 20,000 elements
* axisymmetric elements
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* FE meshes and boundary conditions

1 um displacement
boundary condition
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Stressed substrates gave a significantly different
load-displacement response in every simulated case
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Tabular analysis of FE results begins to reveal trends:

E/c, Ratio Tip Substrate | B*Modulus | B*Modulus | Hardness | Hardness
(E=72 GPa) | Geometry Stress O-P method True A, O-P Method | True A,
(MPa) (GPa) (GPa) (GPa) (GPa)

24 Spherical 0 83 82 6.04 6.04
(vb=0.2) 10 pm rad. -500 81 81 6.49 6.45
24 Conical 0 81 79 6.48 6.22
(v=0.2) 70.3° half-angle -500 83 80 7.05 6.56
120 Spherical 0 93 84 1.97 1.59
(vb=0.3) 10 pm rad. -500 98 83 2.17 1.55
120 Conical 0 95 80 2.19 1.56
(vb=0.3) 70.3° half-angle -500 103 81 2.50 1.56

[ is a correction factor dependent on tip geometry ~ 1.04-1.1

* O-P method relies on unloading portion of indentation load-displacement curve for

computing contact stiffness, S, contact area, A, and ultimately hardness, H, and
modulus, E,, material properties

O-P method does not account for indentation pile-up

Key Formulas —»

2p
S=“CE /A,

Jn
H=P/A

Oliver, W.C., and Pharr, G.C.,"An improved technique for determining hardness and elastic modulus using load and displacement
sensing indentation experiments" J. Mater. Res., Vol. 7, No. 6, 1992, p 1564.

and substrate material determined by the finite element simulation

Criraaro

Using True Ac determined by FE accounts for indentation pile-u@ Sandia

T VLJ.}/A) tCTIrio Ivriaar

* Properties determined using True Ac rely on the contact area between the indenter tip
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‘ Using true contact area in hardness determination
removes the influence of indentation pile-up
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* Compressive residual stress does not impact the true hardness when a material with a high
E/c, ratio is indented with a conical tip

« Compressive residual stress measurably impacts the true hardness when a material with a high
E/cy ratio is indented with a spherical tip only over a certain range of indentation depths
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[1] Swadener, J.G., Taljit, B., Pharr, G.M. JMR, v.16,p.2091,2001
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P ﬂ/[easurable difference in instrumented indentation
response in materials with low E/c, ratio
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* Compressive residual stress measurably impacts the true hardness when a material with a
low E/oy ratio is indented with either a conical or spherical tip across a wide range of
indentation depths, why?
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conical tip

e
P 4 'Stress distributions at 1um indentation depth
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Indentation Pile-up
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spherical tip

'
%‘ Stress distributions at 1um indentation depth
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cavity model

* When the yield point is first exceeded, the plastic zone is small and fully contained by
material that remains elastic. In this circumstance , the material displaced by the

astic-Plastic indentation described by the expanding

indenter is accommodated by an elastic expansion of the surrounding solid. K.L
Johnson, "Contact Mechanics', Cambridge University Press, 1985.

Conical tip:
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Spherical tip (tan f = sin B = = a/R) :
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When measuring residual stress, the expanding cavity model shows
# the benefit of performing experiments in the elastic-plastic regime
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during indentation of a low E/c, material
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Instrumented indentation experiments showing a measurable
difference between stressed and unstressed glass
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Preliminary experiments using an in-situ stressing fixture
support previous experimental and simulated observations

Instrumented Indentation on

Stressed Glass vs. Unstressed Glass
(Berkovich Tip)
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Observations and conclusions drawn from simulated results

A plastic zone always constrained to region underneath tip, as demonstrated in
the low E/o, simulated results corresponds to a not fully developed plastic zone.

These results showed a measurable difference in indentation response between
stressed and unstressed substrates for both spherical and pyramidal tip geometries

A plastic zone that breaks out to the substrate surface, as demonstrated in the
high E/o, simulated results corresponds to a fully developed plastic zone.

These results also showed a measurable difference in indentation response between
stressed and unstressed substrates, that difference is completely attributable to

"indentation pile-up' phenomenon

An indentation experiment that creates a large elastic zone and a small confined plastic zone is
most useful for measuring influence of residual stress using nanoindentation. Glasses and
Cermanics are favorable materials for this type of measurement because of their high E/c, ratio

[2] Johnson, K.L. Contact Mechanics, Cambridge University Press, pg. 171-179.
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