

Measuring Residual Stress in Glasses and Ceramics using Instrumented Indentation

Thomas Buchheit¹ and Rajan Tandon²

¹Materials Modeling Dept.

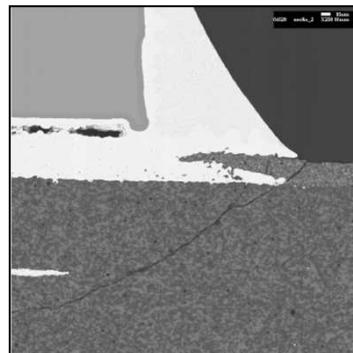
²Materials Reliability Dept.

**Materials and Processes Science Center
Sandia National Laboratories
Albuquerque NM 87185**

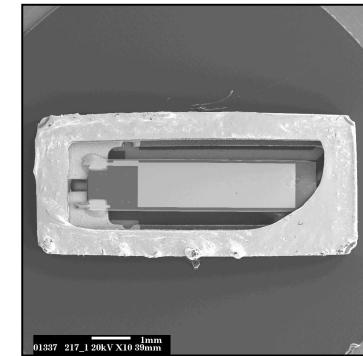
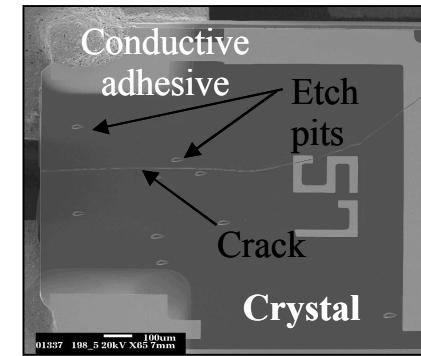
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Problem: Processing and thermally induced residual stresses lead to failure of ceramic-based microsystems components

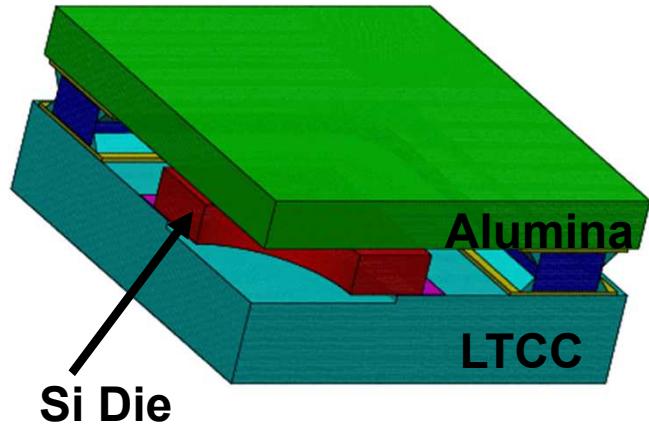
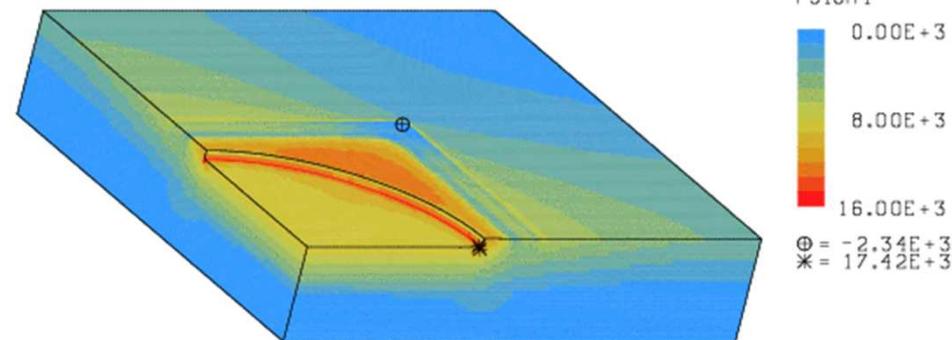
Examples of cracks in LTCC ceramic substrates



Quartz AT Strip SAW Device



FE simulation of Die Attached Microsystems assembly

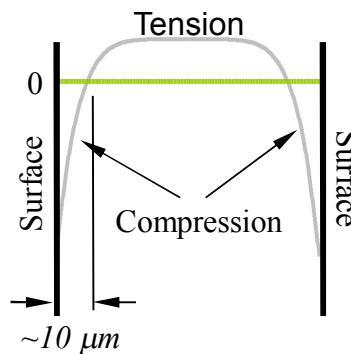


Can nanoindentation be used as a method to measure residual stress in brittle materials?

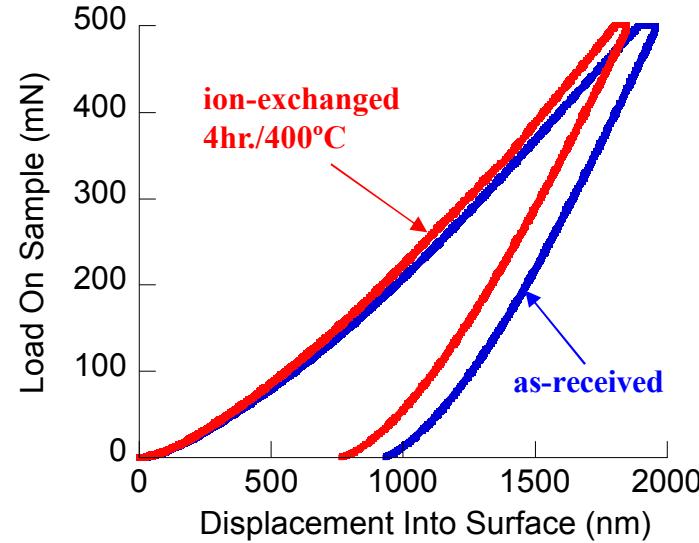
An initial observation:

- A very noticeable and repeatable difference in measured indentation response between unstressed and stressed glass.

Stress Profile in
Ion-Exchanged Glass



PPG Glass – 500 mN load
spherical tip- 10 um nominal radius



Selected Previous Investigation of residual stress measurement using instrumented indentation

All previous investigations rely on a measurable difference in the indentation load-displacement response between stressed and unstressed materials which are otherwise identical

- Suresh, S. and Giannakopoulos, A.E., "A new method for estimating residual stress by instrumented sharp indentation", *Acta mater.*, vol. 46, no. 16, p. 5755 (1998).
 - Attributes measurable differences in the indentation load-displacement response to the indentation contact area.
 - Attempts to elicit values of the residual stress from differences in load in depth-controlled experiments
- Xu, Z.H., and Li. X. "Influence of equi-biaxial residual stress on unloading behavior on nanoindentation", *Acta Materialia*, vol. 53, p. 1913 (2005).
 - empirically-based model using unloading portion of indentation load-displacement curve
- Swadener, J.G., Taljat, B., and Pharr, G.M., "Measurement of residual Stress by load and depth sensing indentation with spherical indenters", *J. Mater. Res.*, vol. 16, no. 7, p. 2091 (2001).
 - Uses spherical cavity model to isolate elastic-plastic testing regime as optimal for sensing residual stress in substrate materials using instrumented indentation
 - Demonstrates that elastic residual stress cannot be sensed by instrumented indentation when "full" plasticity is achieved in the substrate during the experiment.

$E/\sigma_y \approx 25$ in glass, $E/\sigma_y \approx 150$ or greater in most metals.

A series of finite element simulations were performed to investigate the role residual stress on the indentation response

- 8 simulations- displacement control to 1 μm depth

material properties	tip geometry	residual stress
$E=72 \text{ GPa}$ $\sigma_y=3 \text{ GPa}$	spherical- 10 μm radius	1) none 2) -500 MPa
$E=72 \text{ GPa}$ $\sigma_y=3 \text{ GPa}$	conical- 70.3° half-angle	3) none 4) -500 MPa
$E=72 \text{ GPa}$ $\sigma_y=600 \text{ MPa}$	spherical- 10 μm radius	5) none 6) -500 MPa
$E=72 \text{ GPa}$ $\sigma_y=600 \text{ MPa}$	conical- 70.3° half-angle	5) none 6) -500 MPa

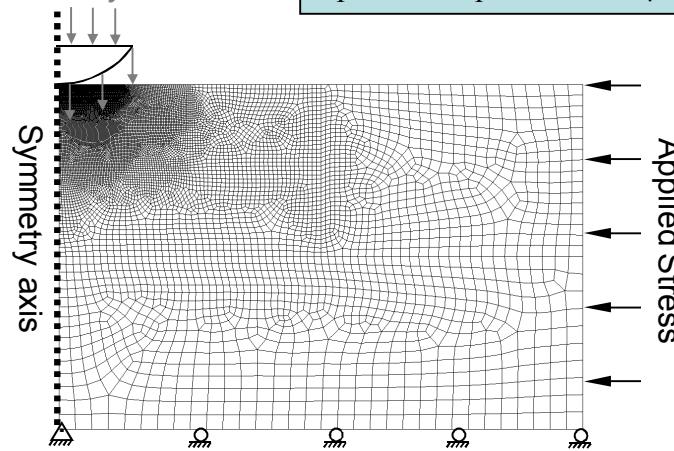
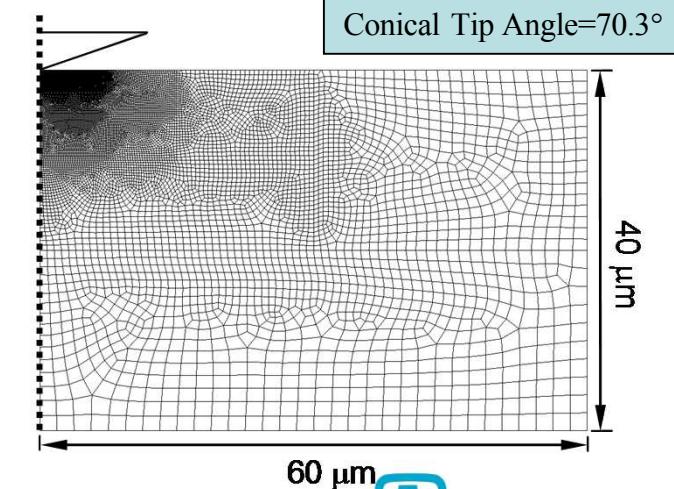
Simulation Details:

- frictionless
- *rigid tip*
- substrate 30x40 μm -fixed
- approx. 20,000 elements
- axisymmetric elements

- FE meshes and boundary conditions

1 μm displacement boundary condition

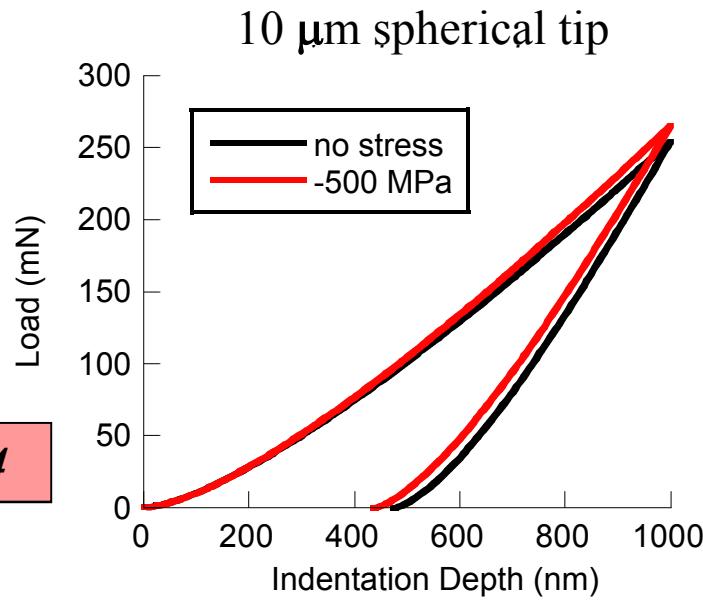
Spherical Tip Radius=10 μm



Stressed substrates gave a significantly different load-displacement response in every simulated case

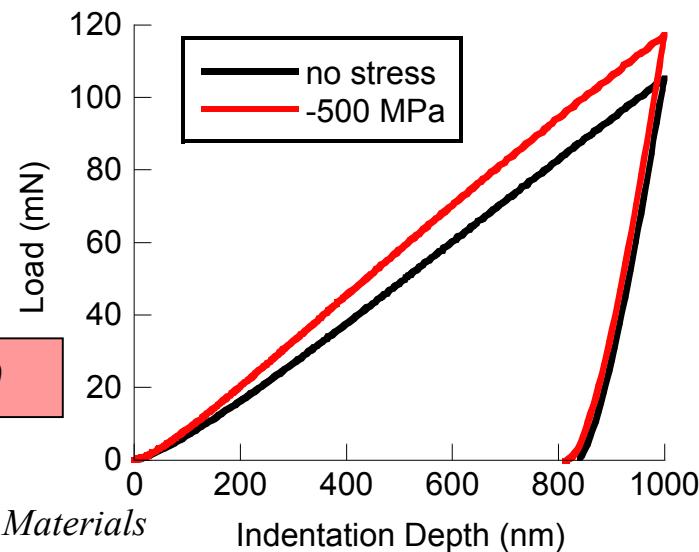
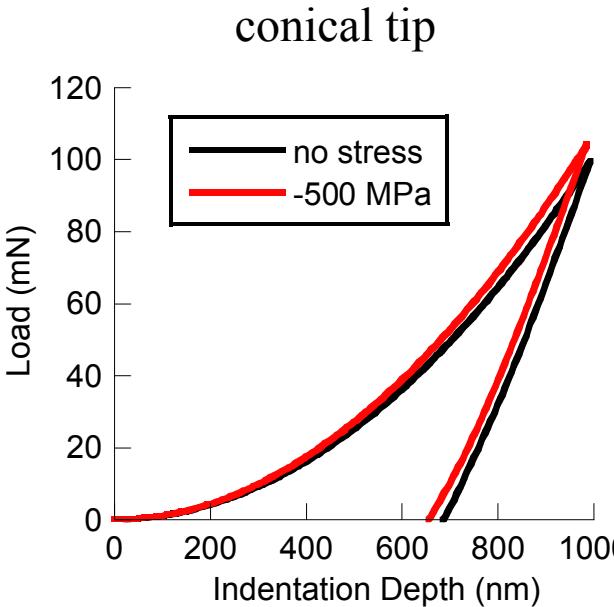
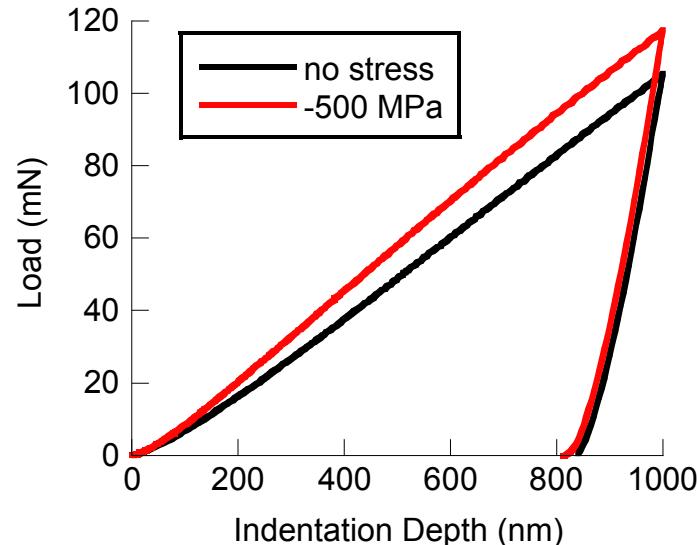
$$E = 72 \text{ GPa}$$
$$\sigma_y = 3 \text{ GPa}$$

$$E/\sigma_y = 24$$



$$E = 72 \text{ GPa}$$
$$\sigma_y = 600 \text{ MPa}$$

$$E/\sigma_y = 120$$



Tabular analysis of FE results begins to reveal trends:

E/ σ_y Ratio (E=72 GPa)	Tip Geometry	Substrate Stress (MPa)	β^* Modulus O-P method (GPa)	β^* Modulus True A_c (GPa)	Hardness O-P Method (GPa)	Hardness True A_c (GPa)
24 (v=0.2)	Spherical <i>10 μm rad.</i>	0 -500	83 81	82 81	6.04 6.49	6.04 6.45
24 (v=0.2)	Conical <i>70.3° half-angle</i>	0 -500	81 83	79 80	6.48 7.05	6.22 6.56
120 (v=0.3)	Spherical <i>10 μm rad.</i>	0 -500	93 98	84 83	1.97 2.17	1.59 1.55
120 (v=0.3)	Conical <i>70.3° half-angle</i>	0 -500	95 103	80 81	2.19 2.50	1.56 1.56

β is a correction factor dependent on tip geometry $\approx 1.04-1.1$

- **O-P method** relies on unloading portion of indentation load-displacement curve for computing contact stiffness, S, contact area, A_c , and ultimately hardness, H, and modulus, E_r , material properties

O-P method does not account for indentation pile-up

Key Formulas →

$$S = \frac{2\beta}{\sqrt{\pi}} E_r \sqrt{A_c}$$

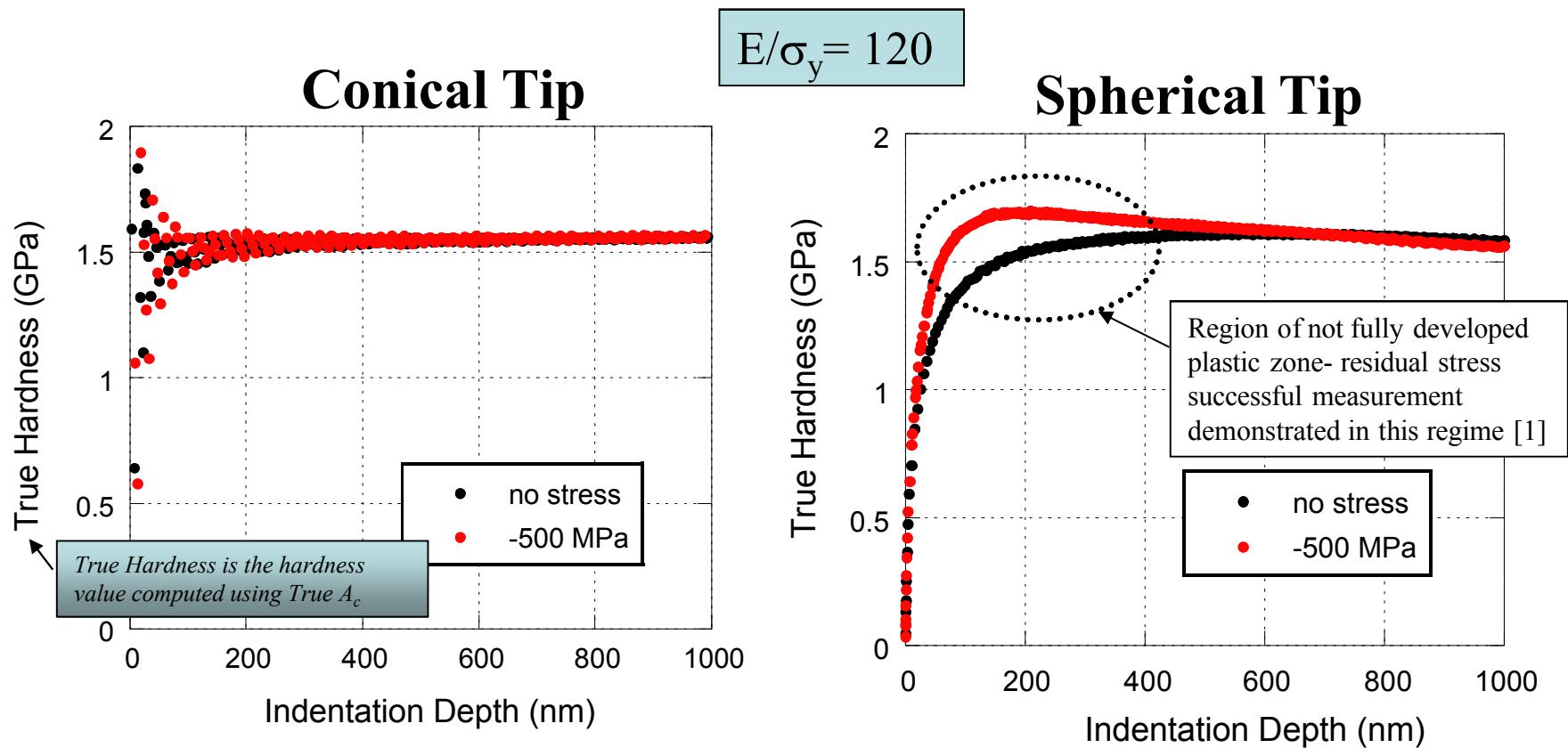
$$H = P / A$$

Oliver, W.C., and Pharr, G.C., "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments" J. Mater. Res., Vol. 7, No. 6, 1992, p 1564.

- Properties determined using **True A_c** rely on the contact area between the indenter tip and substrate material determined by the finite element simulation

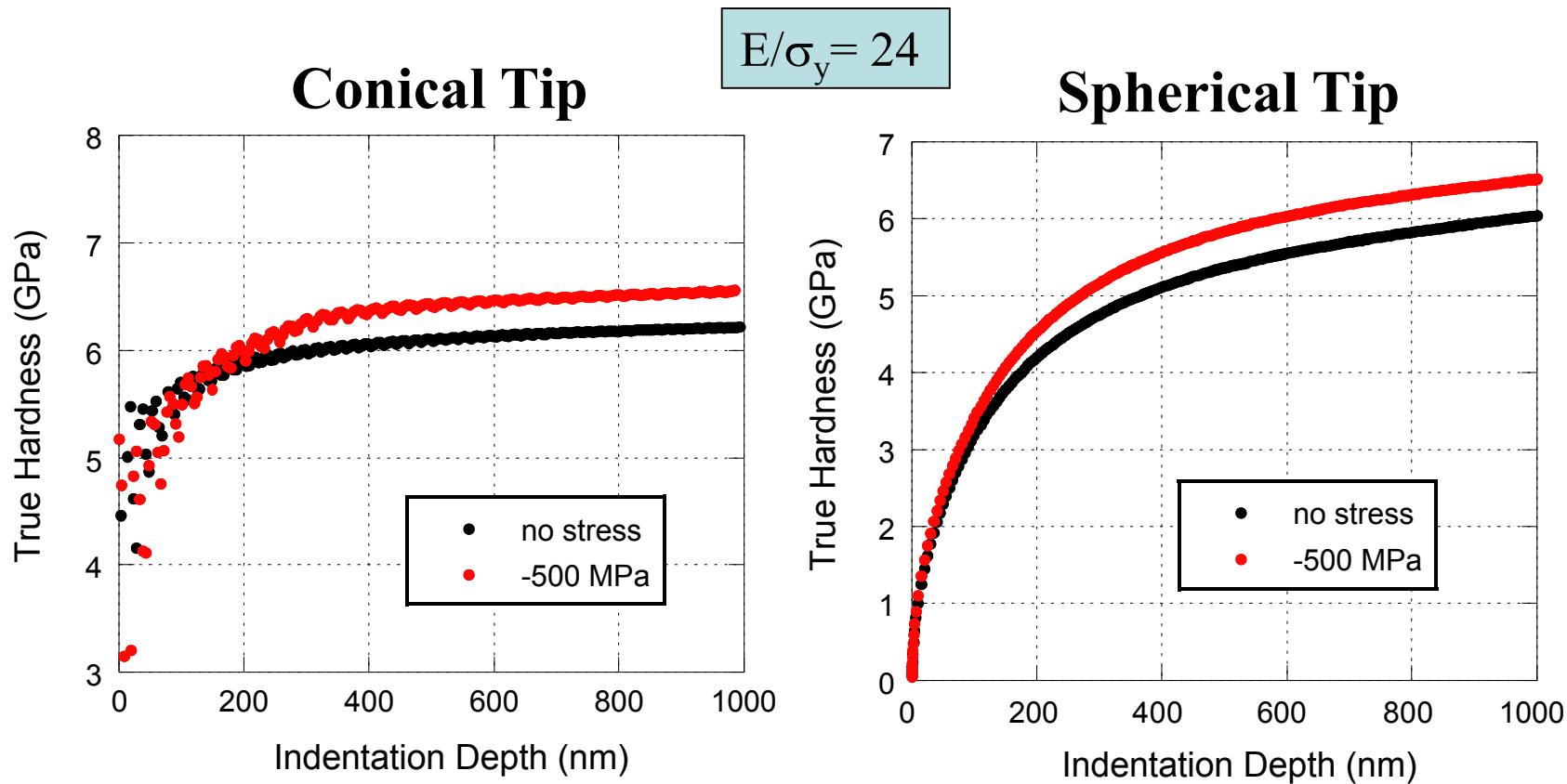
Using True A_c determined by FE accounts for indentation pile-up

Using true contact area in hardness determination removes the influence of indentation pile-up



- Compressive residual stress does not impact the true hardness when a material with a high E/σ_y ratio is indented with a conical tip
- Compressive residual stress measurably impacts the true hardness when a material with a high E/σ_y ratio is indented with a spherical tip *only over a certain range of indentation depths*

Measurable difference in instrumented indentation response in materials with low E/σ_y ratio

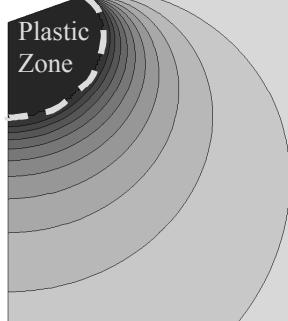


- Compressive residual stress measurably impacts the true hardness when a material with a low E/σ_y ratio is indented with either a conical or spherical tip across a wide range of indentation depths, *why?*

Stress distributions at 1 μ m indentation depth conical tip

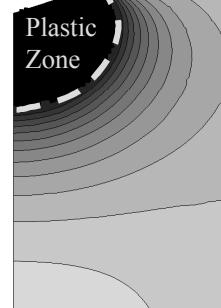
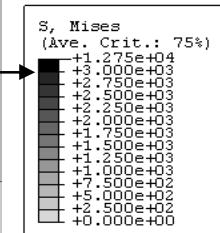
$E/\sigma_y = 24$

substrate stress = 0 MPa



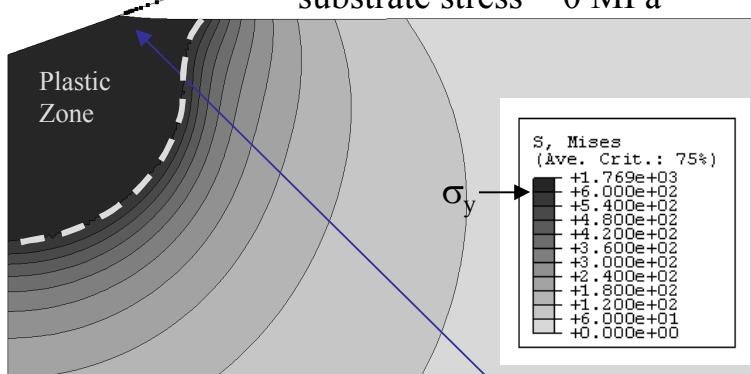
$E/\sigma_y = 24$

substrate stress = -500 MPa



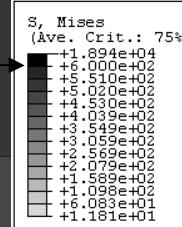
$E/\sigma_y = 120$

substrate stress = 0 MPa



$E/\sigma_y = 120$

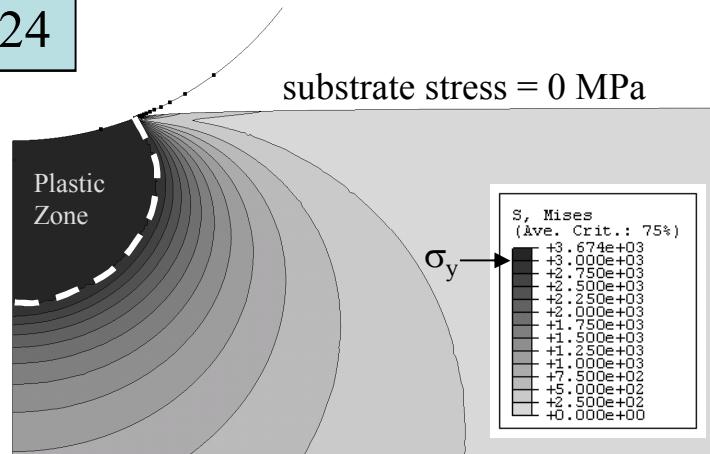
substrate stress = -500 MPa



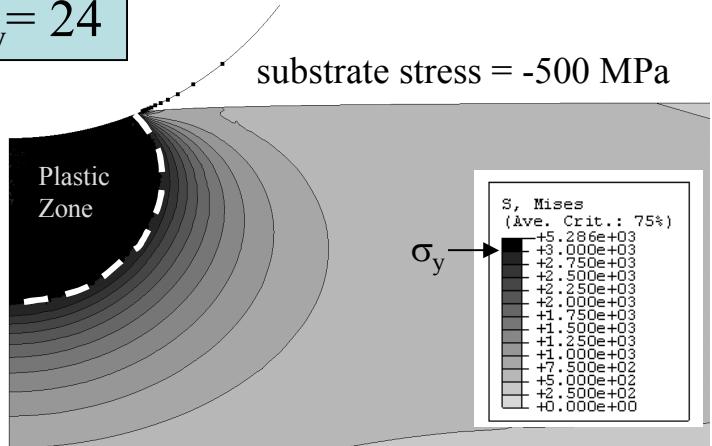
Indentation Pile-up

Stress distributions at 1 μ m indentation depth spherical tip

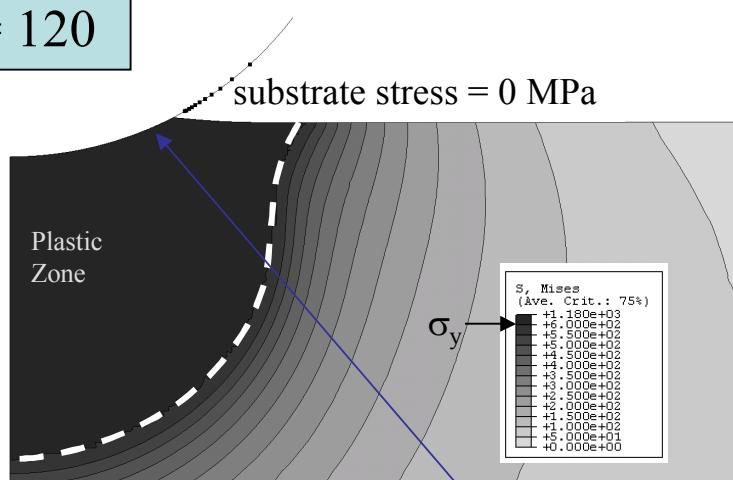
$E/\sigma_y = 24$



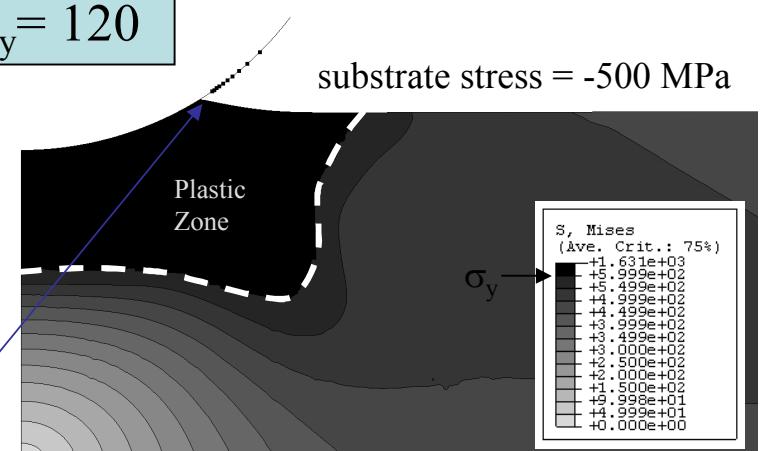
$E/\sigma_y = 24$



$E/\sigma_y = 120$



$E/\sigma_y = 120$



Indentation Pile-up

Elastic-Plastic indentation described by the expanding cavity model

- When the yield point is first exceeded, the plastic zone is small and fully contained by material that remains elastic. In this circumstance, the material displaced by the indenter is accommodated by an elastic expansion of the surrounding solid. *K.L. Johnson, "Contact Mechanics", Cambridge University Press, 1985.*

Conical tip:

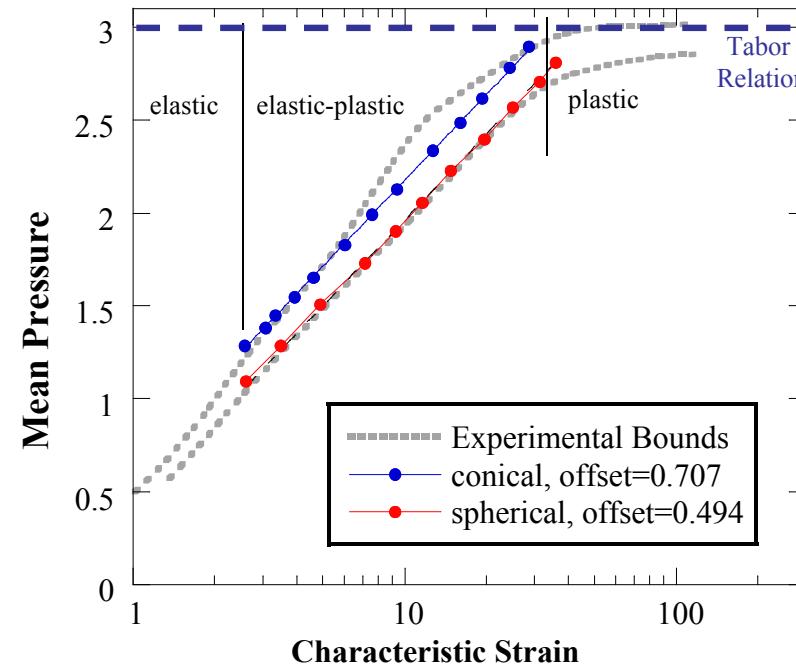
$$\frac{p_m}{\sigma_y} = \frac{2}{3} \left(1 + \ln \left(\frac{1}{3} \frac{E^* \tan \beta}{\sigma_y} \right) \right)$$

Spherical tip ($\tan \beta \approx \sin \beta \approx \beta \approx a/R$) :

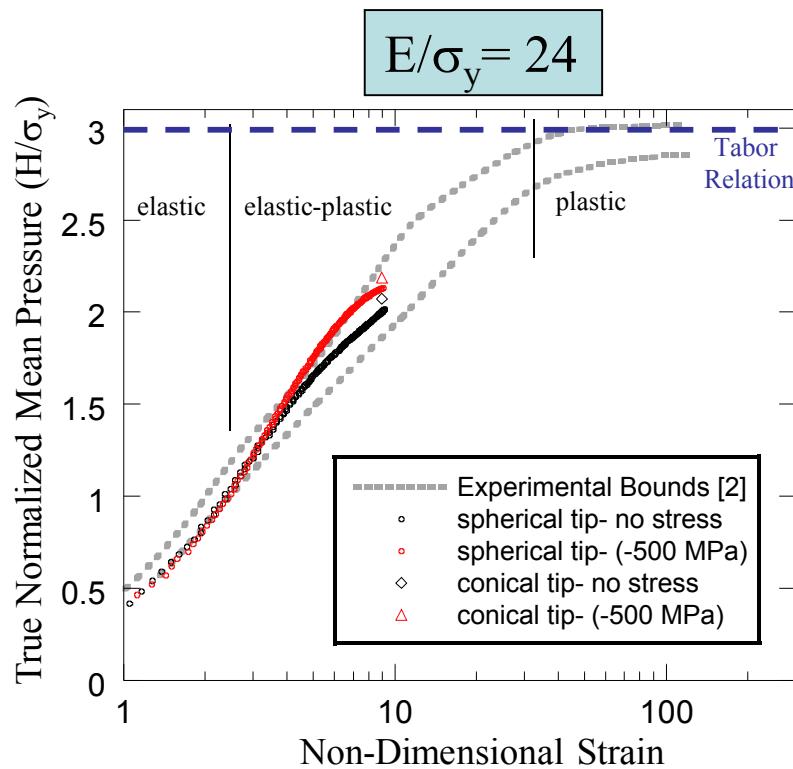
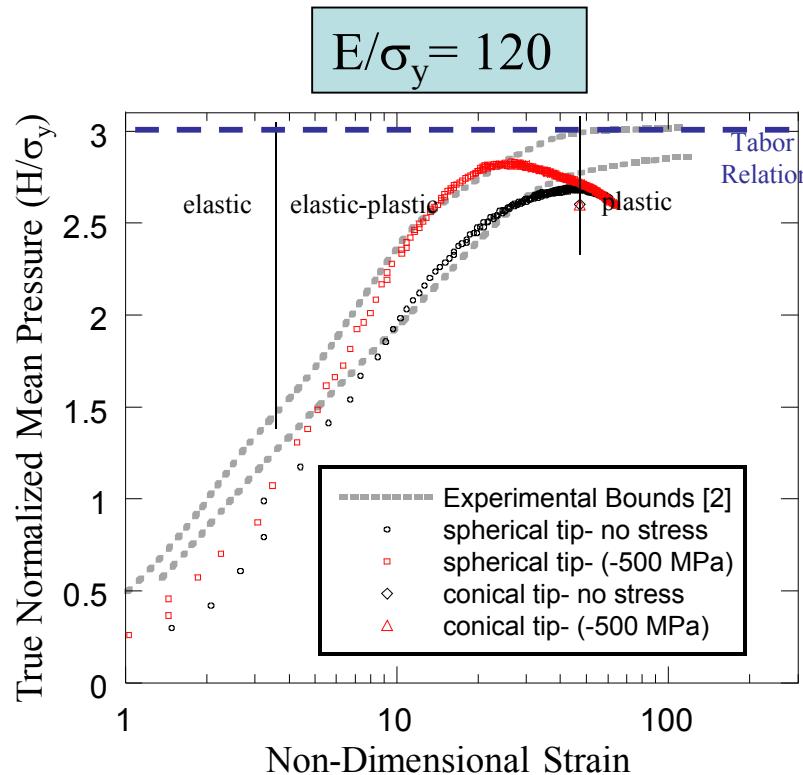
$$\frac{p_m}{\sigma_y} = \frac{2}{3} \left(1 + \ln \left(\frac{1}{3} \frac{E^* (a/R)}{\sigma_y} \right) \right)$$

↑
MEAN
PRESSURE

↑
CHARACTERISTIC
STRAIN



When measuring residual stress, the expanding cavity model shows the benefit of performing experiments in the elastic-plastic regime



Non-Dimensional Strain

$$\left(\frac{E_r a}{\sigma_y r} \right) \text{ for spherical tip, } (a/r) \text{ is depth to tip radius ratio}$$

$$\left(\frac{E_r \tan \beta}{\sigma_y} \right) \text{ for conical tip}$$

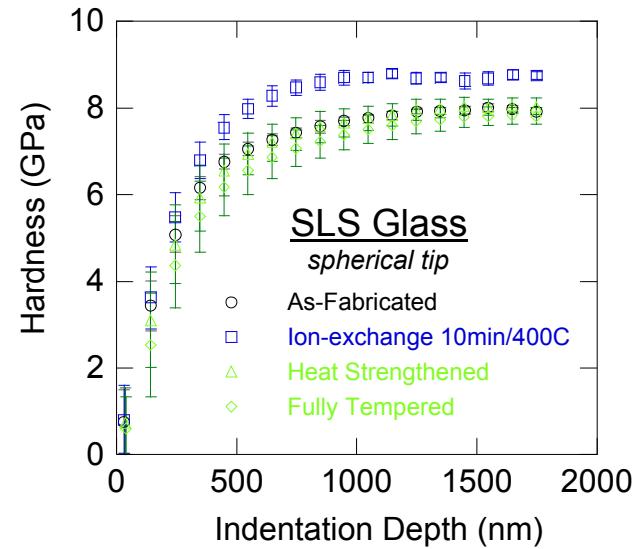
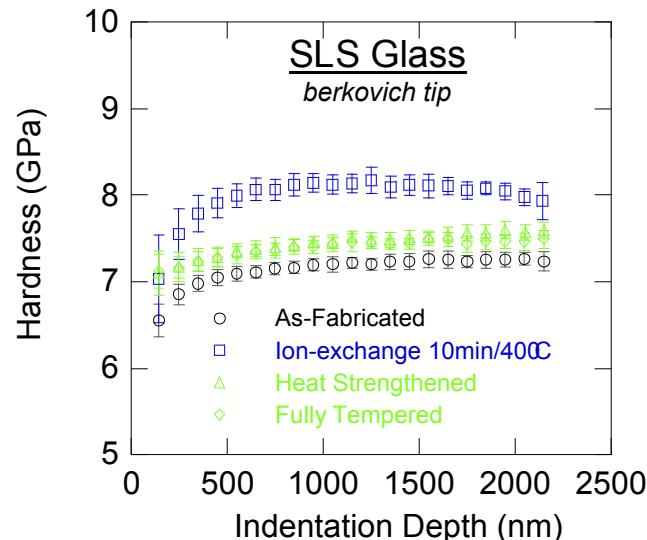
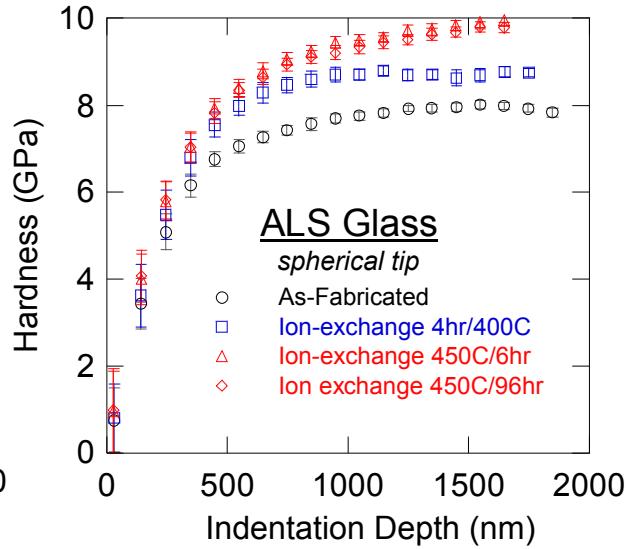
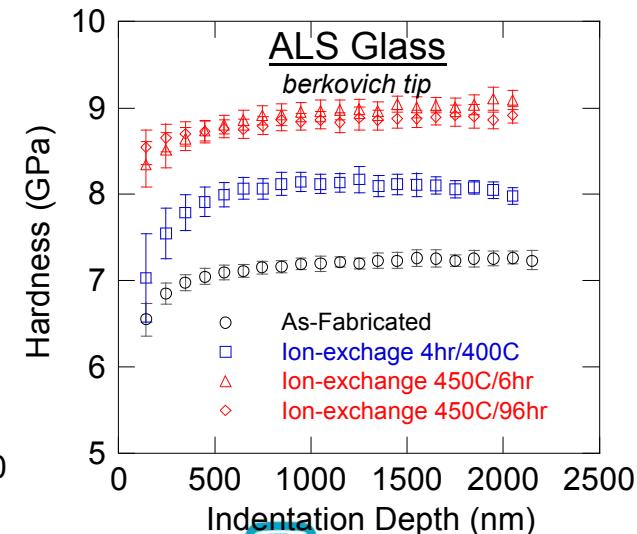
- plastic refers to "fully developed" plastic zone underneath tip. In the absence of indentation pile-up, this result demonstrates that distinguishing between stress and unstressed material using nanoindentation is not possible in the plastic region of the universal curve.
- A fully developed plastic zone may never be achieved during indentation of a low E/σ_y material

Instrumented indentation experiments showing a measurable difference between stressed and unstressed glass

50-100 MPa
SLS Heat Strengthened
SLS Fully Tempered

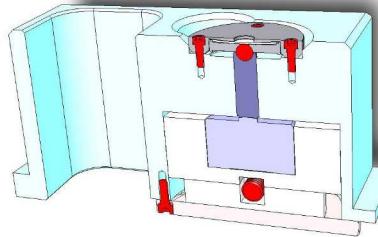
200 MPa
ALS Ion Exchanged 4hr/400C
SLS Ion Exchanged 10min/400C

<300 MPa
ALS Ion Exchanged 6hr/450C
ALS Ion-Exchanged 96hr/450C

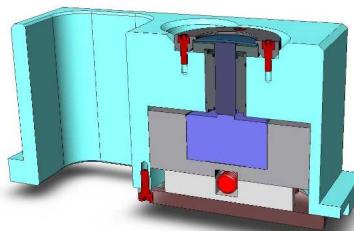


Preliminary experiments using an in-situ stressing fixture support previous experimental and simulated observations

Picture of in-situ biaxial stressing fixture

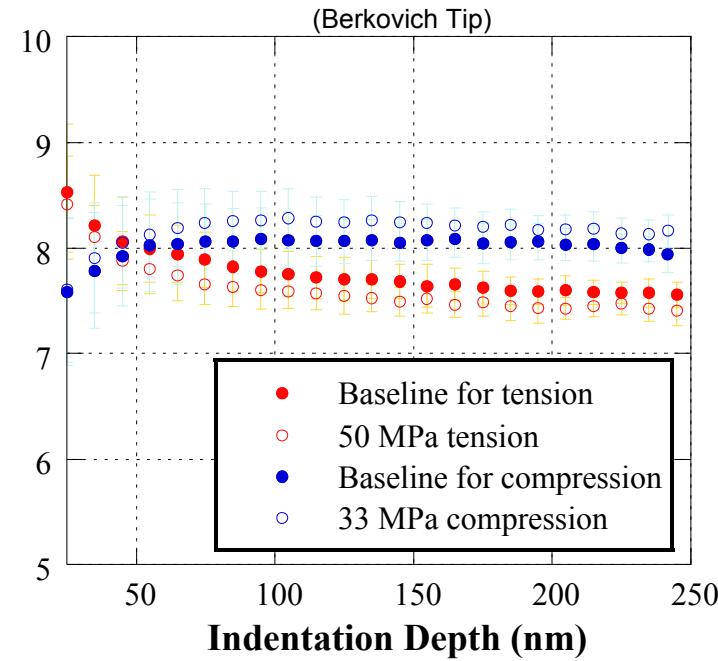


3-D section illustrating assembly for tension

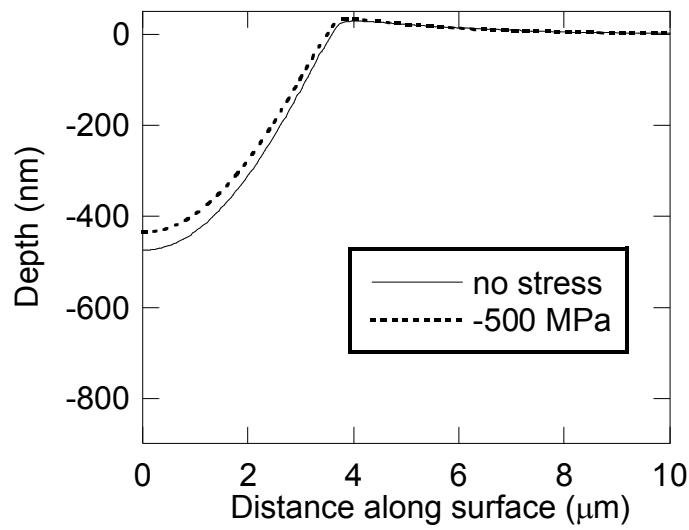
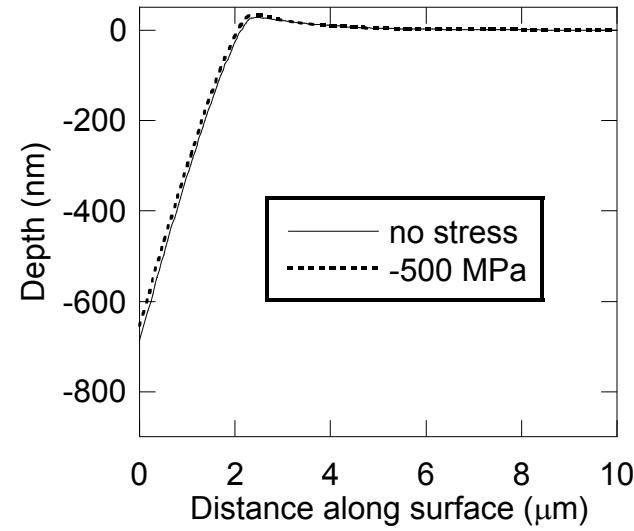
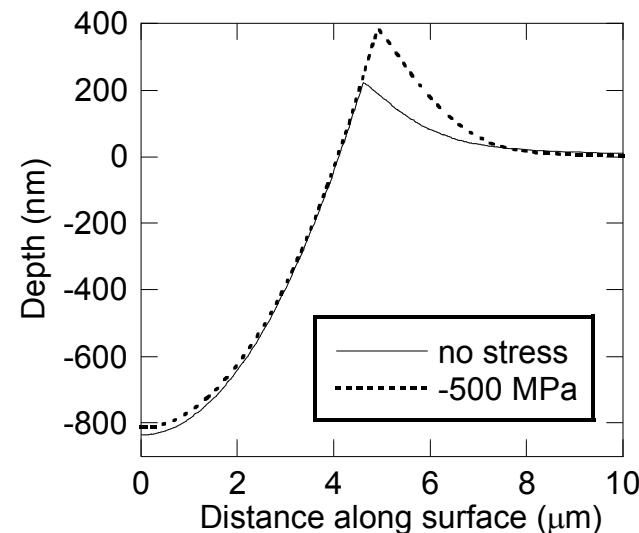
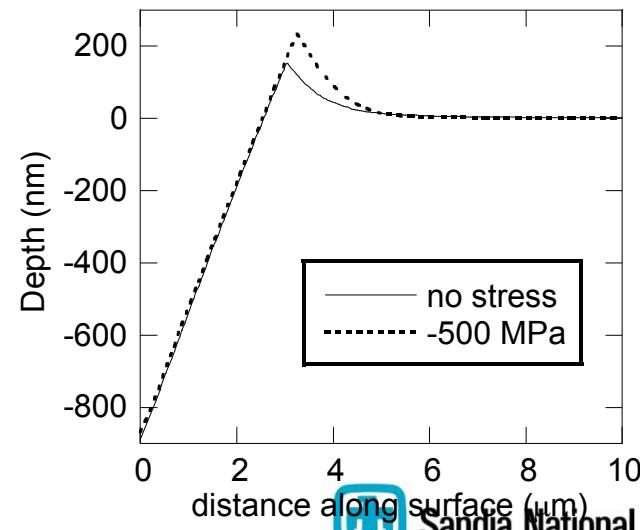


3-D section illustrating assembly for compression

Instrumented Indentation on Stressed Glass vs. Unstressed Glass



Biaxial stress applied using in-situ fixture



Observations and conclusions drawn from simulated results

- A plastic zone always constrained to region underneath tip, as demonstrated in the low E/σ_y simulated results corresponds to a not fully developed plastic zone.

These results showed a measurable difference in indentation response between stressed and unstressed substrates for both spherical and pyramidal tip geometries

- A plastic zone that breaks out to the substrate surface, as demonstrated in the high E/σ_y simulated results corresponds to a fully developed plastic zone.

These results also showed a measurable difference in indentation response between stressed and unstressed substrates, that difference is completely attributable to "indentation pile-up" phenomenon

An indentation experiment that creates a large elastic zone and a small confined plastic zone is most useful for measuring influence of residual stress using nanoindentation. Glasses and Ceramics are favorable materials for this type of measurement because of their high E/σ_y ratio

[2] Johnson, K.L. Contact Mechanics, Cambridge University Press, pg. 171-179.

