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Overview

• Pyrometry has its problems, but is suited to a wide range of problems

• Sandia temperature measurements focuses on two different realms
– Shocked dielectrics (e.g., deuterium)
– Isentropically compressed experiments (ICE), primarily on metals

• Challenges
– Make the measurement

• Measure sample radiance (difficult at low temperatures)
– Reduce the measurement (convert radiance to temperature)

• What do we know about the emitter?
– Interpret that temperature

• How does the measured temperature relate to the temperature of 
interest?

– Believe the measurement
• Do we know if the result is correct?
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 Challenge #1: Making the measurement

• Nanosecond radiance measurements are 
difficult
– Limited number of photons
– Stray light issues
– Single event experiments

• Low temperatures (<1000 K) demand IR 
sensing
– Limited responsivity/bandwidth
– Standard optical fiber doesn’t work 

beyond 2000 nm
– Window spectral cutoff
– Chromatic aberrations
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Sandia infrared efforts

• Developments
– Fluoride fiber bundles and open 

beam relays
• Cost vs. simplicity
• Intended for ZR operations

– New detectors (PEM effect)
– Imaging
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TYPICAL SPECTRAL ATTENUATION 
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Challenge #2: Reduce the measurement

• Pyrometry measurements depend on sample 
temperature AND emissivity
– 0≤ emissivity ≤ 1
– Can be inferred from reflectance and 

transmission
– ~0.1 for metals (infrared)

• Emissivity changes in many ways
– Material state (temperature, pressure, 

phase)
– Surface condition (specular, diffuse)

• Without knowledge of emissivity, only the 
minimum pyrometer temperature is known
– Temperature uncertainty scales with 

emissivity uncertainty

L(λ, T ) = ε×
(

2hc2
0

λ5
(
ehc0/λkT − 1

)
)

ε(θ) = 1− ρ(θ; 2π)− τ(θ; 2π)

The emissivity problem

N measurements
N+1 unknowns
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Sandia emissivity work

• Goal: create emissivity standard for a 
range of (P,T) conditions
– Must be thin for fast equilibrium
– Must be opaque to hide substrate
– Low reflectance is an added bonus

• Ambient emissivity well known
• High T, low P measurements underway 

at NIST

• Low T, moderate P shock experiments 
performed at NSLS
– Thin sample + sapphire windows = 

quasi-isothermal compression
– Preheat capability possible in future 
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NSLS gas gun

• Multi-organizational effort
– Extensive review by Brookhaven 

National Laboratory
– U1 floor space from ExxonMobil
– U2A beam access from Carnegie 

DOE Alliance Center
– Optical relay and diagnostics by 

National Security Technologies 
(SDRD NLV-01)

• Gun based on WSU design
– Identical to Sandia DICE gun
– 3” diameter projectiles
– Velocities up to 400 m/s (1000 psi 

He wrap around breech)
• Future work to span high stresses 

and temperatures
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NSLS optical layout, v11

3.0 mrad divergence applied to light beam.

Si (0.8-0.9 um)

InGaAs 
(1-2 um)

PEM1 
(2-3 um)

PEM2 
(3-5 um)

Specular reflectance measurements

• Broadband specular reflectance measurement (0.7-5 um)
– Wavelength range limited by sapphire (ports/windows) and gold 

mirrors
– Mirrors avoid chromatic aberrations

• Fast detectors resolve individual synchrotron pulses
– vis/NIR: standard photodiodes (Si, InGaAs)
– mid-IR: photoelectromagnetic detectors (HgCdTe)
– Upstream monitor (not shown) tracks pulse-variations

Synchrotron radiation
(beam line U2A)

Obtuse prism 
(95o)

40” EFL

20” EFL

20” EFL
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Example: aluminum shocked to 8 GPa

• Return signal drops 
when sample is 
shocked
– Si: 32%
– InGaAs: 7%
– PEM1: 16%
– PEM2: 13%

• Apparent reflectance 
decrease probably due 
to bond layer (Loctite 
326), not aluminum

Beam passes
through bond
(<0.002  mm)

Standard configuration
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Challenge #3: Interpretation

• What temperature is being 
measured?
– Window changes loading 

(reshock or release)
– Cold window draws heat from 

warm sample
– What about the bond layer (if 

any)?
• Windowless experiments...

– yield zero stress state
– and may result in spall

• We have some ideas, but no real 
data
– Thermal conductivity/contact 

resistance
– What if the bulk sample melts, 

but the surface remains solid?
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Challenge #4: Believing the results

• How does one verify temperature?
– No mechanical analogue (jump conditions, 

fixed displacement, etc.)

• This is an area we need some help
– Complementary methods

• Neutron resonance spectroscopy 
(LANSCE)

• Raman spectroscopy
• Experiment design is key--do different 

diagnostics probe the same temperature?
– Precise melt lines needed for shock/release 

melting (DAC community input)
– Are there well posed experiments where 

temperature can confidently be predicted?
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Summary

• Some progress is being made...
– Mid-infrared diagnostics for low 

temperature ICE states are progressing
– Emissivity standards seem promising

• ...but much remains to be done
– Temperature interpretation is tricky
– Validation still pending

• Other approaches under development
– Embedded microsensors may be useful at 

modest stresses
• Target fabrication is key throughout this 

process
– Stray light mitigation (e.g., voids)
– Bond characterization

• Will temperature measurements ever be 
routine?
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