SAND2007-6764C

Metal-Lipid Nanocomposites from Reconfigurable Bicellar Structures

John A. Shelnutt

Sandia National Laboratories

Molecular Nanocomposites Project

FWP Number 06-013370, SCW93223, KC 0203010 Subtask 2 Complex Nanocomposites
Team: Yujiang Song; Darryl Y. Sasaki; Frank van Swol; Sivakumar Challa; Rachel Dorin; Robert Garcia

Motivation — Our goal is to develop nano-to-microscale structures that allow structural and
functional manipulation, interrogation, and fabrication of new bio/nano composites and
interfaces. The ability to in situ reconfigure or adapt structure and thereby control function is
important for developing new classes of bioinspired nanomaterials and functional behaviors.
The overall objective is the development of new methods for materials design, development of
new building blocks, and organization of the building blocks by self-assembly, directed
assembly, templating, and non-covalent interactions. Ultimately these new functional
nanocomposites will be integrated into platforms allowing their structural and functional
characterization, establishment of structure-property relationships, and incorporation in bio/nano
devices for diverse applications. One aspect of our research involves reconfigurable and
adaptible lipid assemblies, which respond to differing solution condititions by altering the
structure of the lipid assembly or by forming hierarchical superstructures. These reconfigurable
assemblies can then be used as templates for the growth of metal nanostructures and metal-
lipid nanocomposites. Liposomes and bicelles are lipid structures that can be altered by
changes in solution conditions, relative lipid concentrations, presence or absence of metal ions,
temperature, and other factors. In addition, they can serve as templates for metal growth to
produce metal structures that reflect the present morphology of the lipid assemblies. Our current
efforts are directed toward establishing control over these reconfigurable lipid structures and
utilizing them to template the growth of catalytic metal nanomaterials and nanocomposites.
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Fig. 1. Lipids used to form metal-sensitive liposomes and their conversion to stacks of lipid bicelles.

Background — Our use of reconfigurable lipid assemblies as templates for directed synthesis of
metal nanomaterials is an outgrowth of our prior work in two area—the dendritic growth and
photocatalytic control of metal nanostructres [1-5] and the structural control of liposomes and
bicelles [6,7]. Fig. 1. illustrates the use of lipids that bind metal ions to control the
interconversion of liposomes into bicelles and their hierarchical self-organization in to bicellar
stacks. Metal ion binding can also cause the differential aggregation of metal-bound and
unbound lipid molecules in the liposomes, which can be used as a sensing mechanism and as a
means of controling the morphology of the lipid structures. Fig. 2. illustrates our use of various
lipid assemblies as templates to control the dendritic growth of platinum metal to produce a wide
variety of metal nanostructures, including globular Pt nanodendrites, flat dendritic nanosheets,
foam-like nanospheres, nanocages, and nanowire networks.
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Fig. 2. Platinum nanomaterials produced with various templates obtained from lipid assemblies: (a) worm-like
micellar networks, (b) micelles, (c) large liposomes or vesicles, and (d) unilamilar liposomes.

Platinum has technological applications in sensors, biosensors and other devices, and as
catalysts and electrocatalysts for reduction of tailpipe emissions, polymer electrolyte membrane
(PEM) fuel cells, and solar water-splitting devices. Because of the limited supply and high cost
of platinum, researchers are developing methods for reducing the precious metal content in
these applications. One way to minimize Pt usage is to increase catalytic efficiency by
nanostructuring high-surface-area morphologies that are resistant to sintering/ripening
processes. Our recent studies of bicelles and bicelle stacks aid in understanding the interactions
of various lipid assemblies as well as their metal-templating properties that lead to formation of
some extraordinary metal nanostructures using these bio-inspired templates.

New Insights and Directions — During the past year we have extended and combined our
original work in these two research areas of reconfigurable lipid assemblies and templated
growth of dendritic metal nanostructures. In the area of reconfigurable and responsive lipid
assemblies, we have investigated the multi-component system involving two lipids, one of which
binds metal ions, by varying the concentrations of lipids and metal ions to determine the
amounts of each component necessary to induce stacking as shown on the rightin Fig. 1. In
the TEM study of the resultant lipid assembles, we also discovered a liposomal folding
mechanism by which the stacks of bicelles may form, which might also play a role in biology.

Remarkable new platinum nanomaterials have resulted from the combined use of bicelles and
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of the two surfactants shown in Fig. 4.

Fig 3. SEM images of platinum nano-coins produced by dendritic growth of metal with lipid bicelles composed

dendritic metal growth in these lipid assemblies. Using lipid bicelles as templates for dendritic
platinum growth, we produced the wheel-shaped nano-coins shown in the scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) images of Fig. 3. The lipids and
reactants used to synthesize the Pt nano-coins are illustrated in Fig. 4.

The stacking of bicelle disks was also
investigated by Monte Carlo simulation of
hard circular cylinders. Simulations at
various packing fractions (not shown),
demonstrate the oriented ordering
characteristic of hard coins. Hard coins do
not overlap and have no short-range and no
long-range interactions. The simulations
provide an understanding of the super-
stacks of Pt coins and bicelles and verify
that interaction between bicelles must play a
role in their stacking.

TEM studies and Monte Carlo simulations of
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Fig 4. Surfactants and reactants used in producing the
platinum nano-coins by dendritic growth of metal with
lipid bicelles composed of the two surfactants shown.




the sintering process of platinum dendritic nanosheets demonstrate the formation of persistent
nanopores during sintering and the formation of sintering-resistent holey sheets (Fig. 5). This
study illustrates one of the unique properties of these new bionanomaterials, which is of
particular importance for catalysis. The nanopores form quickly and their diameters is close to a
critical value related to the sheet thickness at which they persist for long times during sintering.
In the present case, the persistent pores also form in the thinnest possible Pt sheet (2-3 nm) to
give the highest surface area possible in a sintering-resistant holey sheet morphology.

ARy,

In conclusion, lipid bicelles have
successfully used as soft-templates for the
first time for the growth of dendritic platinum
nano-coins. The lipid stacks of bicelles were
prepared via chemical recognition and these
will be platinized to form nanoscale Pt nano-
coin stacks. Monte Carlo simulations aid in
understanding for the assembly and
organization of both the Pt coins and the
lipid stacks. In addition, in situ TEM studies
and Monte Carlos simulations of the
dendritic Pt nanosheets show that they for
holely nanosheets that are resistant to
further sintering, indicating that the Pt nano-
coins may also have similar sintering-
resistant properties due to their similar
dendritic and sheet-like structural features.

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin
Company, for the United States Department of
Energy’s National Nuclear Security
Administration under Contract DEAC04-
94AL85000.

Fig 5. Sintering of Pt dendritic sheets like that forming
the “spokes’of the platinum nano-coins in the electron
beam for 0 and 40 minutes (top) and Monte Carlo
simulations of the sintering process showing the
conversion of the dendrites to the sintering-resistant
holey nanosheet.
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Abstract

Platinum has technological applications in sensors, biosensors, and other devices, and as catalysts and
electrocatalysts for reduction of tailpipe emissions, in polymer electrolyte membrane (PEM) fuel cells, and in solar
water-splitting devices. Because of the limited supply and high cost of Pt, researchers are developing methods for
reducing the precious metal content in these applications. One way to minimize Pt usage is to increase catalytic
efficiency by nanostructuring high-surface-area morphologies that are resistant to sintering processes. Herein, we
report the synthesis of remarkable platinum nanocoins by using soft surfactant assemblies called bicelles, as
templates. Monte Carlo simulations have been performed to provide understanding of the stacking and packing
properties of the templating bicelles and of the resulting platinum ‘nanocoins’. Monte Carlo simulations of the
sintering of dendritic platinum sheets suggests that they form holey sheets, which are resistant to further sintering
and thus preserve active surface area. The studies of bicelles and bicelle stacks also aid in understanding the
interactions of various lipids that lead to formation of these extraordinary assemblies.
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SEM Images of Pt nanocoins

TEM Images of Pt nanocoins
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Monte Carlo simulations of hard circular cylinders (coins) at various packing fractions (0.15, 0.22, 0.3, and 0.43 volume fraction
shown left to right), demonstrating the oriented ordering characteristic. Hard coin means no overlapping and no short-range and no

200 - 300 nm long-range interactions. This is purely a geometrical effect, providing understanding of the Pt coins and the lipid super-stacks.

Sintering of dendritic Pt nan

osheets to form holey sheets: experiment & MC simulations
Holey sheet formation is observed during the electron-
beam heating of a 2-nm thick Pt dendritic sheet (at left)
for different times.

Monte Carlo simulations of platinum dendritic
nanosheets (at right) demonstrate the formation of
nanopores during sintering. The nanopores form quickly
and, if their diameter is close to a critical value related
to the sheet thickness, then they persist for long times
during sintering. Persistent pores in the thinnest
possible sheet (2-3 nm) give the highest surface area
possible in this sintering-resistant holey sheet
morphology.
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