

APPLICATION OF DECISION-AIDING TECHNIQUES TO TRANSPORTATION ROUTES

Ruth F. Weiner, Sandia National Laboratories
PATRAM
October 22-26, 2007

Decision Analysis Literature

- Keeney, Ralph and Raiffa, Howard: *Decisions With Multiple Objectives*, 1986.
- Keeney, Ralph: *Siting Energy Facilities*, 1987
- Weiner, R. F. and Quiggle, R. " Multiattribute Decision Analysis for the HLW Repository Sites Selected for Characterization" *Research Notes; Northwest Environmental Journal*, 1987, pp. 165-166.
- Keeney, Ralph and Raiffa, Howard: *Decisions With Multiple Objectives*, 1993
- Prindle, M. H., Tierney, M., Weiner, R. F., Boak, D. M., Hora, S. "Decision-Making for Geological Repositories" International Conference on Geologic Disposal of Radioactive Waste, Winnipeg, Canada, September, 1996.
- Prindle, M. H., et al. *Second Iteration of the System Prioritization Method v. III: Analysis for Final Programmatic Recommendations*, Sandia National Laboratories, Albuquerque, NM, 1996.

Characteristics of a Multi-Attribute Decision Analysis

- Many goals
- Some goals conflict with others
- Often includes tradeoffs
- The analysis has a large subjective component – different decision-makers will make different decisions

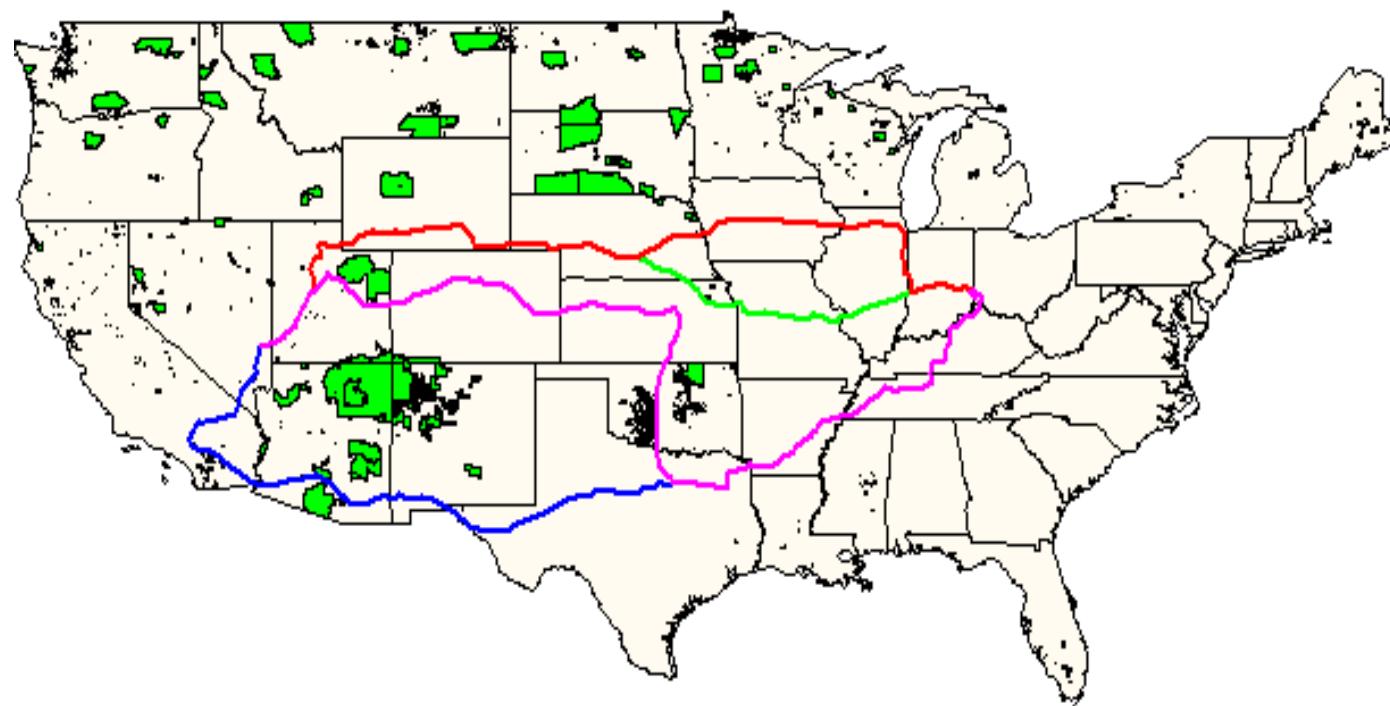
Sample Decision Analysis

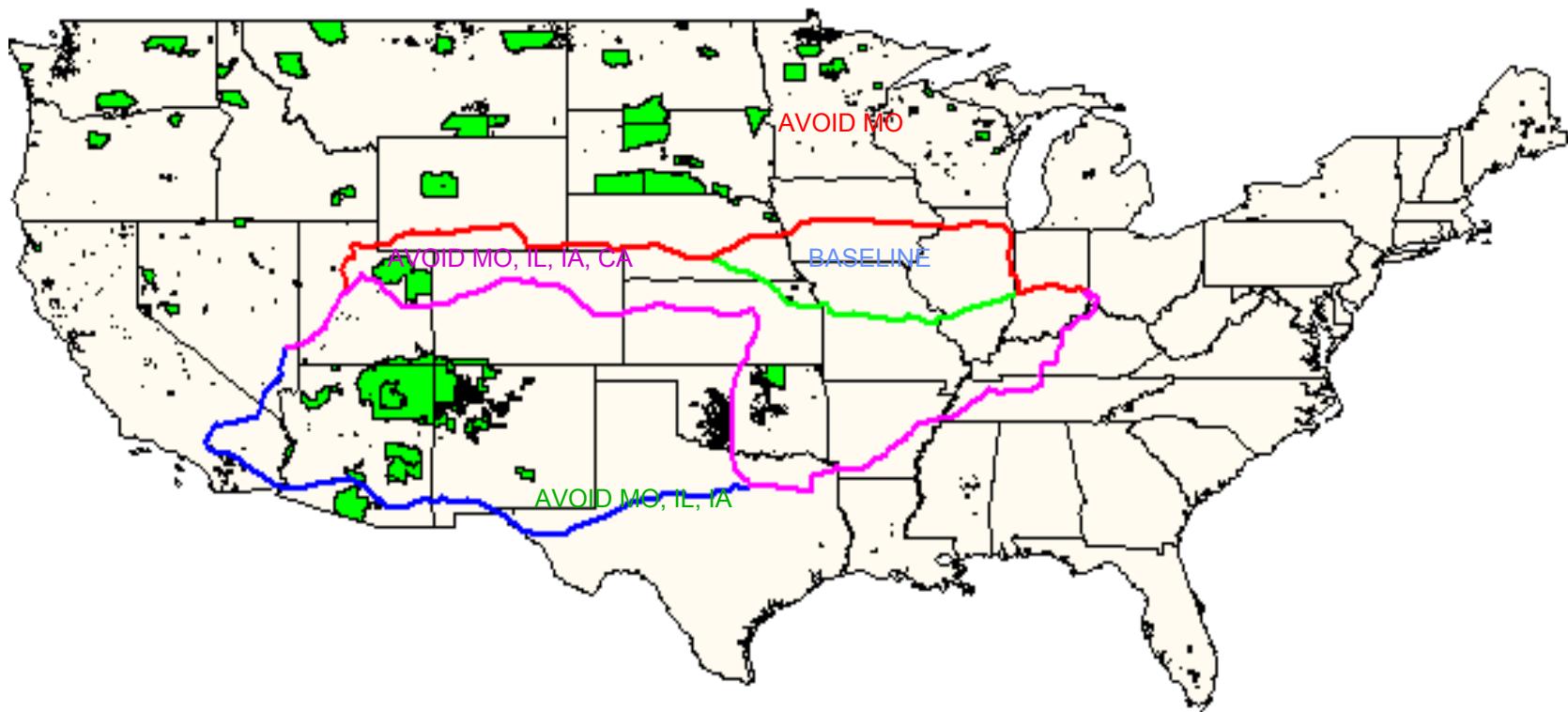
Example: selecting a transportation route

Goals:

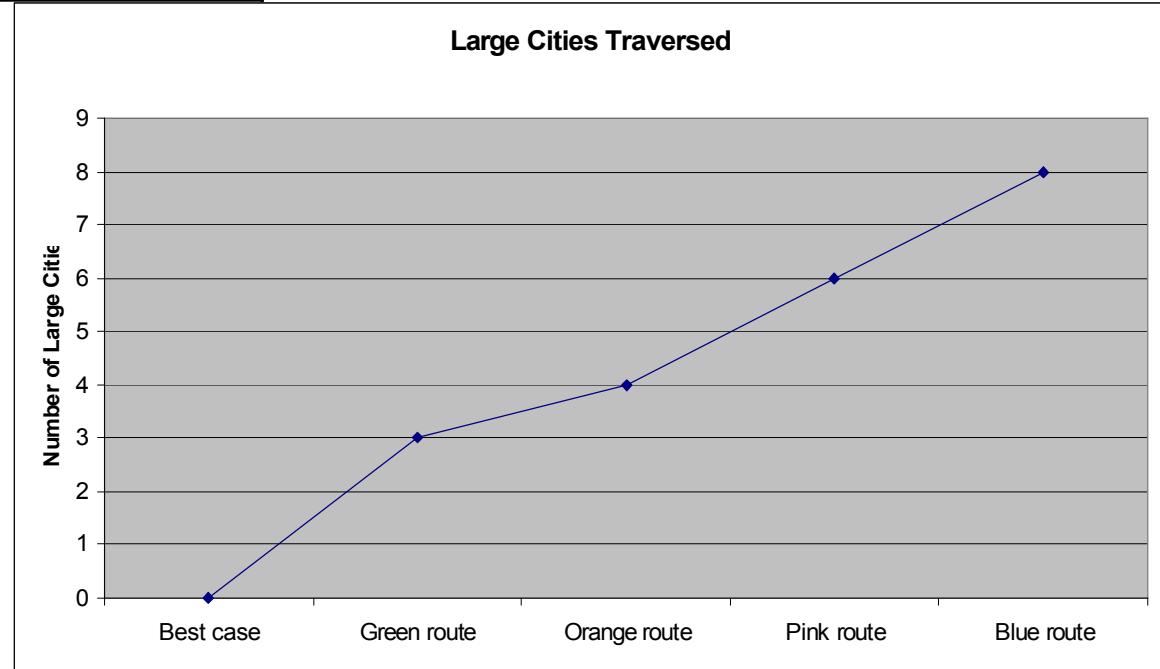
- Avoid certain states
- Minimize transit through urban areas
- Minimize transit across tribal lands
- Minimize route length
- Minimize likelihood of accidents

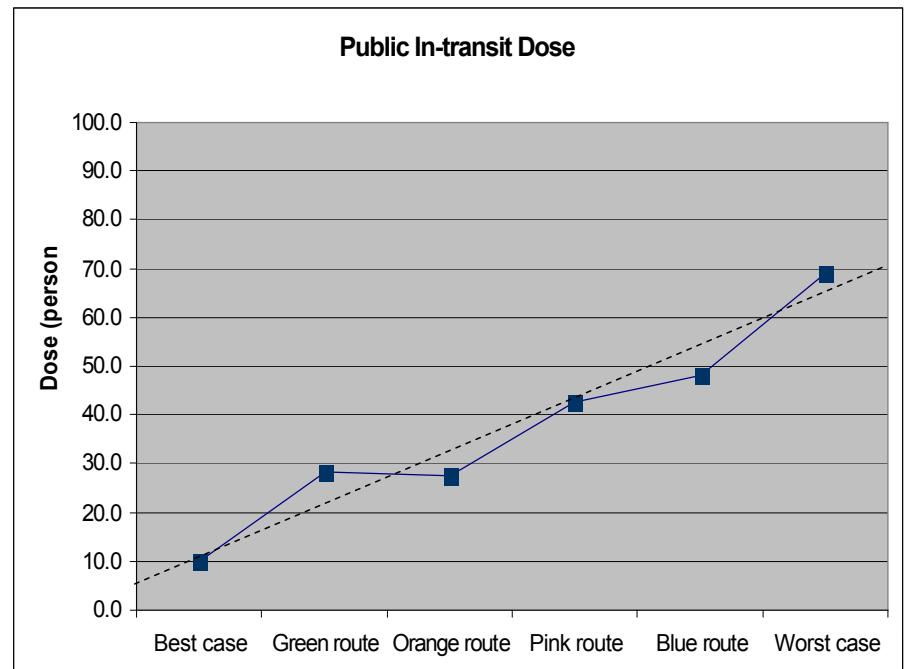
Sample Decision Analysis


Goals contain the attributes of the decision:


- Minimize transit through urban areas
 - Length of route segments through urban populations
- Minimize transit across tribal lands
 - Distance across tribal lands
- Minimize route length
 - Total distance traveled on each route
- Minimize likelihood of accidents
 - Accident frequency on each route (state by state)

Sample Alternate Routes




Ranking the Attributes

	large cities	rank
Best case	0	
Green route	3	0.625
Orange route	4	0.5
Pink route	6	0.25
Blue route	8	0
Worst case	8	

Ranking the Attributes – Another Example

PUBLIC IN-TRANSIT DOSE (person-mrem)					
	R	S	U	TOTAL	RANK
Best case					
Green route	1.297	12.003	0.805	28.305	0.69
Orange route	1.382	12.797	1.159	27.738	0.70
Pink route	1.844	21.55	1.311	42.805	0.44
Blue route	1.899	24	1.735	48.034	0.35
Worst case					
	69.0				

Weighting the Attributes

Weighting the Attributes

State Acceptance Least Important

	Sample importance weights	Rankings				Importance x Rankings			
		Green	Orange	Pink	Blue	Green	Orange	Pink	Blue
		Green route	Orange route	Pink route	Blue route	Green route	Orange route	Pink route	Blue route
rte length	24.6	0.7	0.6	0.1	0.1	16.5	15.3	3.4	3.4
accident prob	22.6	0.6	0.6	0.5	0.2	14.5	13.1	10.8	3.4
routine dose	12.6	0.7	0.7	0.4	0.4	8.2	8.8	5.5	4.4
urbanctr	22.6	0.6	0.5	0.3	0.0	14.1	11.3	5.7	0.0
indian lands	17.6	1.0	0.7	0.4	0.1	17.6	11.4	7.2	2.1
avoid IL	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0
						70.9	59.9	32.7	13.4

Weighting the Attributes

Route Length Least Important

	Sample importance	Rankings				Importance x Rankings			
		Green	Orange	Pink	Blue	Green	Orange	Pink	Blue
	weights	Green route	Orange route	Pink route	Blue route	Green route	Orange route	Pink route	Blue route
rte length	0	0.67	0.62	0.14	0.14	0	0	0	0
accident prob	24.4	0.64	0.58	0.48	0.15	15.6	14.2	11.7	3.7
routine dose	14.4	0.65	0.7	0.44	0.35	9.4	10.1	6.3	5.0
urbanctr	24.4	0.625	0.5	0.25	0	15.3	12.2	6.1	0.0
indian lands	19.4	1	0.65	0.41	0.12	19.4	12.6	8.0	2.3
avoid IL	17.4	0	0	1	1	0.0	0.0	17.4	17.4
						59.6	49.0	49.5	28.4

Weighting the Attributes

State Acceptance, Dose From Routine Transportation Least Important

	Sample importance	Rankings				Importance x Rankings			
		Green	Orange	Pink	Blue	Green	Orange	Pink	Blue
rte length	27.8	0.7	0.6	0.1	0.1	18.6	17.2	3.9	3.9
accident prob	25.8	0.6	0.6	0.5	0.2	16.5	14.9	12.4	3.9
routine dose	0.0	0.7	0.7	0.4	0.4	0.0	0.0	0.0	0.0
urbanctr	25.8	0.6	0.5	0.3	0.0	16.1	12.9	6.4	0.0
indian lands	20.8	1.0	0.7	0.4	0.1	20.8	13.5	8.5	2.5
avoid IL	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0
						71.9	58.5	31.2	10.2

Some Observations

- The MUA method combines an objective criterion, **rank**, with a subjective criterion, **weight**.
- This is a decision **aiding** method, not a method that makes decisions.
- “Weight” is the importance of any attribute or parameter of a decision **to the decision maker**.
- These numbers are meaningful only in comparison
- “Gaming” this type of system is not easy or trivial
- MUA is not a popular decision aiding method.