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Abstract

Non-radial flow signatures are seen in many hydraulic tests in fractured media. The 
generalized radial flow approach initially formulated for fracture flow, which uses a variable 
flow dimension (n), is increasingly used to interpret hydraulic tests to account for non-radial 
flow. Flow dimension can be estimated directly from the second derivative of pumping test 
drawdown versus log time and can be described as the power by which cross-sectional area 
of flow changes with respect to radial distance from the borehole. Representing non-radial 
flow dimensions in a 2D numerical model has been problematic. As part of an effort to 
understand how to structure heterogeneous transmissivity to create the type of non-radial 
flow signatures commonly observed, we generated spatially correlated binary random 
transmissivity fields with directional anisotropy in the correlation length. Analysis of 
simulated pumping tests in these fields provided the same types of non-radial diagnostic 
responses commonly observed in pumping tests in a fractured dolomite at the Waste Isolation 
Pilot Plant (WIPP) site. Using these simulated tests, we discuss the estimation of 
transmissivity using flow dimension as a variable versus traditional estimation methods that 
assume radial flow.
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Introduction

Pumping test data derived from tests in fractured aquifers often indicate that flow 
within these aquifers is non-radial. The generalized radial flow (GRF) model developed by 
Barker (1988) incorporates a geometric term called flow dimension (n) that accounts for 
changes in cross-sectional area of a flow system with respect to distance from the borehole, 
allowing for simulation of non-radial flow. Barker’s model has been applied in well-test 
analysis to characterize fractured media (Bangoy et al., 1992; Kuusela-Lahtinen et al., 2002; 
Leveinen, 2000), but subsequent use of hydraulic parameters such as transmissivity (T) 
derived from non-radial analysis has been hampered by an inability to meaningfully 
incorporate both these hydraulic parameters values and the corresponding geometry in 
commonly utilized two-dimensional models such as MODFLOW (Harbaugh et al., 2000).
Walker et al. (2006) demonstrated that many commonly used heterogeneity models do not 
reproduce non-radial flow characteristics observed in fractured systems.

In this research, we explore the connection between flow dimension, aquifer 
geometry, and inferred values of T and storativity (S) using a series of two-dimensional 
numerical experiments. We simulate and analyze pumping tests in idealized aquifer channels 
(flow conduits) of various geometries contained within an impermeable host material. The 
flow dimensions exhibited by our models are determined using diagnostic plots described by 
Roberts et al. (1999) and Beauheim et al. (2004). We then systematically alter the T of the 
host material and evaluate diagnostic response changes. We explore the potential utility of 
the GRF model in less idealistic settings by conducting diagnostic analysis of simulated 
pumping tests in Gaussian-based binary random fields.

Background

Mathematics and Conduit Simulation Formulation

Barker (1988) defined the GRF one-dimensional model as 
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where SS is specific storage [1/L], h is hydraulic head [L], t is elapsed time [T], K is hydraulic 
conductivity [L/T], r is radial distance from the borehole [L], and n is flow dimension. He 
described the relationship between distance from pumping well (r) versus cross-sectional
area of flow (A) as
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where b is aquifer thickness [L] and Γ is the gamma function. For our study, we assume that 
the flow area at the well, A(rw), is constant and does not change as a function of n as it does 
in (2). Given this assumption and letting a=2πn/2/Γ(n/2), b at the distance r = rw is seen to be
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For any distance r in a constant n system, we can substitute the right-hand side of (3) for b in 
(2) to get
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which simplifies to
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This relationship defines the cross-sectional area of flow at any distance r from the borehole
in terms of the specified area A(rw). Using equation (5), we are able to create a two-
dimensional conduit for any specified value of n.

Conduit Simulations

The first idea we explore is the representation of various flow dimensions in a two-
dimensional model through application of equation (5). While familiar geometries such as 
linear, radial, and spherical flow (n = 1, 2, and 3, respectively) have always been easy for 
people to visualize, non-integer dimensions have been much more difficult to understand in a
two-dimensional context. In this section, we investigate the application of (5) using finite 
difference simulations and provide visualizations of non-integer flow dimensions.

Field Generation

To create conduits with non-integer geometries, we generate two-dimensional finite 
difference fields of constant thickness where the width of the conduit at any distance r is 
defined by (5) for a given initial area. Figure 1 shows four conduits with various geometries.



Figure 1: Examples of conduit geometries generated by (5). It is important to note the scale 
of the y-axis when comparing conduits.

Conduit generation involved transcribing the changing cross-sectional areas of flow 
described by (5) and Figure 1 into a finite difference context. These fields consisted of a 
transmissive conduit-shaped flow zone surrounded by an impermeable host material with a 
pumping well placed at the apex of each conduit (Figure 2). For our simulations, we tested 
conduits between flow dimension values of linear (n = 1) and radial (n = 2). We assume a 
fully penetrating, block-centered well with ideal pumping in a saturated, confined aquifer of 
constant thickness for all simulations. We use a telescoping grid that increased the space 
between each node as distance from the pumping well increased, similar to the approaches of 
Willmann et al. (2007), Tumlinson et al. (2006), and Oden and Niemi (2006). This spacing 
scheme was used to extend flow boundaries to a distance where boundary effects were not 
evident in the simulated pumping data while maintaining simulation accuracy with a finer 
grid at the pumping well.

Conduit Simulation Results and Discussion

Using the grids described above, constant-rate pumping tests were simulated in 
MODFLOW with n = 1.0, 1.2, 1.4, 1.6, and 1.8. Ehlig-Economides et al. (1990), among 
others, noted that the pressure derivative (p′) developed by Bourdet et al. (1989) displays 
late-time straight lines with slope related to the flow geometry/dimension.
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Figure 2: An example of the conversion of a conduit calculated by (5) converted to a map-
view finite difference context.

The relationship between the slope of the pressure derivative (m) and n is given by 
Barker (1988) as:
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Defining a scaled second derivative as:
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Roberts et al. (1999) and Beauheim et al. (2004) created a semilog plot of the scaled second 
derivative versus log time such that the late-time data will plot as a constant value equal to n
– a flow-dimension diagnostic plot. Figure 3 shows the flow-dimension diagnostic plots
derived from the simulated constant-rate pumping tests in each of our conduits. The late-time 
values for each of the diagnostic plots correspond well with the input value of n.

Aquifer Property Estimation

To determine how well the input values of T, S, and also the specified value of n used 
to create the conduit geometry could be estimated from the MODFLOW simulation data 
described above, we used Sandia National Laboratories’ numerical well-test analysis code 
nSIGHTS (Roberts, 2006) to estimate these three parameters as well as the uncertainty 
associated with the parameter estimates. nSIGHTS uses non-linear regression to optimize the 
values of the fitting parameters and thereby obtain the best match to the simulated 
MODFLOW pressure responses. The uncertainty quantification method applied to the 
analyses in this report is a process referred to as perturbation analysis. Preliminary analyses 
are performed in which a reasonable fit is obtained to the simulated pressure data. The 
resulting values of the fitting parameters are the baseline solution set – a single value for each 
fitting parameter that provides a satisfactory fit to the data (satisfactory being a judgment call 
on the part of the analyst).

Host Material

Pumping Well

Transmissive Material



Figure 3: Flow dimension diagnostic plots for constant-rate tests with n = 1.0, 1.2, 1.4, 1.6, 
and 1.8.

Perturbation analysis begins by assigning a plus/minus range corresponding to the 
parameter space one wishes to investigate to each of the baseline fitting-parameter values.
Starting at the baseline value, the fitting parameters are then randomly perturbed to fall 
somewhere within their assigned ranges and are then reoptimized from these random starting 
points. The objective of perturbation analysis is to adequately sample the parameter space 
and locate all of the minima (possible solutions) within the parameter space, allowing the 
global minimum (assumed true solution) to be identified. Three hundred 
perturbation/optimizations were performed to quantify the uncertainty in the T, S, and n 
estimates. Input T and S values used for the simulations were T = 1E-5 m2/s and S = 1E-4, 
and the specified n varied as listed in Table 1 below. This method provided us with mean 
estimates of S and T that differed from the input values by factors no greater than 3.3 and 0.6, 
respectively, less than an order of magnitude.

Conduit Simulations with Variable Transmissivity Host Material

We next investigated the effect of altering the transmissivity of the host material 
(nodes) surrounding each conduit, using n = 1.6 for the conduit geometry and a constant 
value of T = 1E-5 m2/s within the conduit. Simulations were run using four different T values 
for the host material: 1E-9, 1E-8, 1E-7, and 1E-6 m2/s. Unlike the preliminary analyses from 
our impermeably bound conduit simulations, the flow dimension was allowed to vary as a 
function of distance from the borehole (n(r)) within nSIGHTS to obtain an adequate fit of our 
simulated data. As the simulation progressed, leakage through the previously impermeable 
sides of the conduits effectively increased the cross-sectional flow area, and as a result, 
increased the apparent flow dimension of the system.



Minimum Estimated Value Maximum Estimated Value
Input

n S T (m2/s) n
Input

n S T (m2/s) n
1.0 2.80E-05 2.03E-06 0.86 1.0 1.25E-03 4.31E-05 1.07
1.2 3.90E-05 8.10E-06 1.20 1.2 1.16E-04 1.65E-05 1.22
1.4 9.55E-07 9.39E-07 1.33 1.4 4.95E-03 8.16E-05 1.51
1.6 1.00E-08 1.04E-06 1.48 1.6 1.00E-03 1.36E-04 1.79
1.8 2.65E-05 1.45E-06 1.66 1.8 5.61E-04 2.78E-05 2.01

Estimated Mean Value Estimated Variance
Input

n S T (m2/s) n
Input

n S T (m2/s) n
1.0 2.02E-04 1.28E-05 1.00 1.0 3.20E-09 8.10E-12 9.33E-05
1.2 8.80E-05 1.02E-05 1.20 1.2 4.84E-10 5.07E-12 1.32E-07
1.4 2.47E-04 1.08E-05 1.40 1.4 2.94E-07 7.19E-11 1.04E-04
1.6 3.29E-04 1.21E-05 1.61 1.6 1.45E-07 1.50E-10 2.83E-04
1.8 1.27E-04 6.44E-06 1.83 1.8 1.06E-09 2.46E-12 4.81E-04

Table 1: Parameter estimates derived from nSIGHTS perturbation analysis.

To implement n(r) in nSIGHTS, two to three values of n were specified at distance ranges in 
the model with all values of n between the three specified values linearly interpolated. The 
model then optimized both the value of n at the specified points and also the distance 
between these points to best match the measured data. Figure 4 shows the n(r) function used 
for the simulation in which the conduit and host material T values differed by two orders of 
magnitude.

Figure 4: Flow dimension values and corresponding distances from borehole used in the n(r) 
approach to fit simulated data.



Flow Dimension Analysis

Flow-dimension diagnostic plots for the four simulations, shown in Figure 5, all 
exhibit a late-time increasing dimension. The positive slope is caused by the gradual increase 
in flow contribution of the surrounding host material. We believe, given enough time and a 
large enough field, that the flow dimension of each will stabilize to radial (n = 2) much like 
the linear strip case demonstrated by Butler and Liu (1991) and the T estimated from a 
pumping-test response would be equal to that of the host material. When comparing the 
separate simulations, estimated flow dimension decreases as the transmissivity contrast 
increases. This is expected, as the system that is most homogeneous results in a more radial 
flow dimension.

Figure 5: Flow-dimension diagnostic plots for simulated pumping in a conduit of n = 1.6 
with host material transmissivity 1, 2, 3, and 4 orders of magnitude (om.) lower than the 
conduit transmissivity.

Aquifer Property Estimation

The results of our perturbation analysis of the four simulations are detailed in Table 2. 
We find that flow dimension converges toward the value used to create the conduit as the 
transmissivities of host and conduit material diverge. Flow dimension at the near n zone is 
also approximated close to that of the conduit geometry for all but the most homogeneous 
case. Mean transmissivity estimates were all lower than that of the conduit transmissivity, at 
most by a factor of 1.35, and mean storativity estimates were all higher than conduit values, 
at most by a factor of 0.54. These differences reflect the flow through the conduit sides from 
the host material which results in a lower average transmissivity of the system (compared to 
the conduit) and allows for greater flow contribution to the conduit.



Minimum Estimated Value
Host

T (m2/s) S T (m2/s) n1 n2 n3
1E-6 2.05E-06 3.26E-06 1.46 1.88 -
1E-7 1.00E-04 7.65E-06 1.66 1.72 1.79
1E-8 1.14E-04 7.17E-06 1.53 1.71 -
1E-9 1.21E-04 7.92E-06 1.57 1.65 -

                 
Maximum Estimated Value

Host
T (m2/s) S T (m2/s) n1 n2 n3

1E-6 4.25E-04 1.53E-05 1.9 2.04 -
1E-7 1.14E-04 8.40E-06 1.67 1.73 1.83
1E-8 1.65E-04 9.97E-06 1.65 1.77 -
1E-9 1.55E-04 9.49E-06 1.62 1.68 -

Estimated Mean Value
Host

T (m2/s) S T (m2/s) n1 n2 n3
1E-6 1.10E-04 5.44E-06 1.82 1.97 -
1E-7 1.10E-04 7.76E-06 1.67 1.72 1.82
1E-8 1.32E-04 7.88E-06 1.63 1.75 -
1E-9 1.35E-04 8.27E-06 1.61 1.67 -

Estimated Variance
Host

T (m2/s) S T (m2/s) n1 n2 n3
1E-6 1.07E-09 1.57E-12 3.39E-3 1.65E-2 -
1E-7 7.00E-05 3.41E-05 6.01E-6 3.43E-6 3.84E-5
1E-8 1.42E-10 4.18E-13 5.41E-4 1.31E-4 -
1E-9 3.09E-11 5.75E-14 4.42E-5 3.03E-5 -

Table 2: Perturbation analysis results for property estimation of conduits imbedded in 
variable transmissivity host material. The conduit properties were S = 1E-4 and T = 1E-5 
m2/s.

Binary Random Field Simulations

In our first set of conduit simulations, we explored the connection between flow 
dimension and geometry and then the effects of variable host transmissivity with constant 
conduit geometry. For the next section of work, we explore the inverse by simulating 
pumping in fields with varied geometry, but no transmissivity changes. As a result, we hope 
to create Gaussian-based fields that reproduce persistent subradial flow characteristics similar 
to those observed in actual field tests.



Past Works

Several approaches for simulated pumping test analysis in random fields involving 
flow dimension have already been conducted. Walker et al. (2006) simulated pumping tests 
in three stochastic model types: percolation networks, fractional Brownian motion, and 
multivariate Gaussian. They find that multivariate Gaussian fields and fractional Brownian 
motion fields averaged a radial, n = 2, signature while percolation networks averaged a sub-
radial signature of approximately n = 1.5. Their results suggest that the fields most 
commonly used for simulated pumping, i.e. Gaussian, are likely to reflect a radial simulation 
response which is atypical of field data responses.

Simulated pumping responses in fractured media have been investigated by many, but 
the study most relevant to our work was by Acuna and Yortsos (1995). They use a fractal 
application of a fracture network to generate their fields. The most notable characteristic of 
their work is a perpetuating positive slope in their simulated pressure derivatives. Positive 
slope diagnostics are commonly seen in field data, however, the positive slope diagnostic 
plots generated by Acuna and Yortsos contain little to no variation, while some variability is 
common in field data.

Our binary random field simulations are the basis by which we intend to explore a 
way to generate Gaussian fields that, in contrast to the Gaussian-field simulations of Walker 
et al. (2006), result in a positive slope diagnostic. We also intend for the positive slope 
diagnostics to contain variations similar to that of field data, contrary to results displayed in
Acuna and Yortsos (1995).

Field Generation

Our first task was to create fields of single transmissivity/storativity amongst units of 
impermeable media that would result in purely geometric diagnostic analysis effects from 
simulated pumping. The fields we first investigated were created by generating Gaussian 
random fields with input mean, variance, and directional correlation length. We then chose a 
divide in the field values and designated them half transmissive (T = 1E-5 m2/s) and half 
impermeable regions. This methodology mimics that used by Zinn and Harvey (2003) in 
their reclassifications of transmissivity values using distribution functions. The result is a 
field where flow will propagate in a single transmissivity and storativity with impermeable 
regions dictating changes in flow area and direction.

Binary Random Field Simulations

The initial simulations used fields divided into binary components by the mean value 
of the original Gaussian random field with equal x- and y-directional correlation lengths 
(isotropic). Diagnostic analyses of these simulations were similar to the findings of Walker et 
al. (2006). Generally, flow dimension stabilized at approximately radial. The diagnostic
analyses of these simulations reinforced the findings of Walker et al. and were dissimilar to 
diagnostic analysis of WIPP field data.



Our next suite of simulations were conducted in fields with the same mean binary 
divide, but with anisotropy applied through a 1:10 ratio of the x- to y-directional correlation 
lengths. Pumping was simulated in fifty of these anisotropic fields with the only variability 
between each being different seed values used in their generation. Diagnostic analysis of 
simulated pumping in these fields produces a wide array of varying and stabilized flow 
dimension values, and showed the desired positive slope (subradial flow) characteristics 
typically seen in WIPP field data (Figure 6). We also note that several of the simulations that 
mimicked WIPP data had a final flow area shaped similarly to that of our conduits from the 
previous section.

Figure 6: A visual comparison of a diagnostic analysis of a pumping test at the WIPP site
(left) from Beauheim and Ruskauff (1998) and the diagnostic analysis of simulated pumping 
in one of our binary random fields (right).

From this we conclude that the positive slope characteristics often observed in data 
from the WIPP site and other fractured locations (e.g., Walker et al., 2006) likely reflect the 
geometry of the fracture networks and the strong transmissivity contrast between the 
fractures and surrounding host rock.

Conclusions

Field data from pumping tests performed in fractured dolomite in the vicinity of the 
WIPP site often exhibit subradial flow characteristics. In this paper, we demonstrate a 
physical connection of flow dimension to simple field geometries using equation (5) that
allows us to simulate subradial, non-integer flow dimensions in a two-dimensional finite 
difference model. Using perturbation analysis combined with standard well-test analysis 
techniques, we are able to accurately estimate T and S values in these conduit geometries. 
We explored the effects of leakage into the conduits using various transmissive host 
materials and demonstrated what one would expect using diagnostic analysis: flow 
dimension increasing with time toward 2 (radial) and overall system transmissivity 
decreasing from that of the conduit toward that of the host material. Using anisotropic, binary 
random fields, we are able to produce a realistic representation of heterogeneity in a fractured 
medium. Diagnostic analysis of simulated pumping-tests in these fields produced persistent, 



non-integer flow dimensions and positive-slope diagnostic characteristics commonly seen in 
WIPP field data.

We note that our conduits bound in a transmissive material and our binary random 
fields result in the same type of positive slope diagnostic. Conduits bound in transmissive 
material should eventually adopt a radial flow dimension as the contribution of the host 
material is realized unlike binary random fields which will have a flow dimension strictly 
tied to changes in the geometric system. In the case of field application, knowledge of the 
geologic material in which one is pumping may allow the analyst to assess the degree to
which each is affecting well test response. Future study is needed to quantify and possibly 
separate the interplay of these two effects. In a fractured medium such as the Culebra 
Dolomite at the WIPP site where fracture transmissivity is typically no more than two orders 
of magnitude greater than the matrix transmissivity, the flow dimension inferred from a 
diagnostic plot is likely somewhat higher than the flow dimension of the fractured network 
alone due to the contribution of flow from the matrix. In such a case, the inferred value of 
transmissivity for the entire system is likely less than the transmissivity of the fracture 
network.
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